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Genome-wide Association Studies

1 Setting the pace

1.2 What can your spit tell you about your DNA?

1.b Speaking the language: relevant questions and concepts
1.c “The Human Genome Project” and its context

2 The rise of GWAs

3 Study Design Elements

3.a Marker level

3.b Subject level

3.c Gender level (not considered in this course)
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4 Pre-analysis Steps

4.a Quality-Control

4.b Linkage disequilibrium

4.c Confounding by shared genetic ancestry
5 Analysis Steps

5.a Association / Regression

5.b Causation

6 Post Association Analysis Steps

6.a Replication and validation

6.b GWA Interpretation and follow-up
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1 Setting the pace
1.2 What can your spit tell you about your DNA?

The use of saliva

e People spit for a variety of reasons. We've all employed the technique to
remove a hair or some other distasteful object from our mouths. People
who chew tobacco do it for obvious reasons. Ball players do it because
they're nervous, bored or looking to showcase their masculinity. And
people in many different cultures spit on their enemies to show disdain.

e Thanks to a phenomenon known as direct-to-consumer genetic testing or
at-home genetic testing, people are spitting today for a much more
productive (and perhaps more sophisticated) reason -- to get a glimpse of

their own DNA.
(science.howstuffworks.com)
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From saliva to DNA

e Your saliva contains a veritable mother load of biological material from
which your genetic blueprint can be determined.

e For example, a mouthful of spit contains hundreds of complex protein
molecules — enzymes -- that aid in the digestion of food.

e Swirling around with those
enzymes are cells sloughed off
from the inside of your cheek.

e Inside each of those cells lies a
nucleus, and inside each nucleus,
chromosomes, which themselves
are made up of DNA
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Commercial kits

Do not eat, dnnk, smoke, chew gum, brush your teeth, or use mouthwash for at
least 30 minutes pnior 1o providing your sample

Collect the recommended volume of saliva The recemmended volume of saliva to
provide 1s 2 mlL, or about )2 teaspoon Your saliva sample should be just above the
fill ne.

Prowide your sample and add the stabiizat:on buffer wathin 20 minutes. The full
saliva sample should be collected within 30 minutes and the funnel contents
should be released nto the tube immediately. Waging longer than 30 minutes may
decrease the yield and quality of your DNA

Cap securely before shipping. Remember to remove and discard the funnel kd and
place the tube cap on securely before mading your sample 1o our laboratory.
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SIGN IN REGISTER KIT HELP Vv

23andMe*
OURSERVICE HOWITWORKS v  STORIES BUY I

/// Order 7 Spit “_ Discover

///

% Your saliva collection kit o Follow kit instructions to spit /////// In approximately 6-8 weeks,
I typically arrives within 3 to 5 in the tube provided — all we will send you an email to
days. Express shipping is from home. Register your let you know your reports
available. saliva collection tube using are ready in your online
the barcode so we know it account. Log in and start
belongs to you, and mail it discovering what your DNA
back to our lab in the pre- says about you.

paid package.

> 7 _
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. . . R 2 Print this page Key to your results
Your estimated lifetime risk
Condition name
Click anywhere on the colored boxes below 10 access in-depth information about each heaith
@ condition, your genetic predispositions, what you can do, your specific genetic markers, and much
more.
0-1% >1-10% >10 - 25% >25 - 50% >50 - 100% » Why orange & gray boxes?
Brain aneurysm You have no Video: WW et
results in this
You: 0.91% range Tutorial: Review the tutorial
Avg: 090% »
More: How we estimate your
risk
Rheumatoid
arthritis
You: 0.88% Your genetic counselor
Avg: 3.3% »
Counsedors are available
M woekdays from Sam 1o S5pm PST,
or you ¢an schedule another time
You: 0.55% Do o y0.
Avg: 1.0% » Gl o) Ba108
Intematonal:
Macutar 1 (650) 585-7743
You: 0.44%
Avg: 3.1% »
W
Multiple Deep vein -
toros) S @ il;a;lng results
You: 0.28% Your 2.9% th your doctor
L et AT . A ARG S

Van Steen K



Bioinformatics applications

The 23andMe story

e Woijcicki founded 23andme in 2006 with Linda Avey and Paul Cusenza
with a goal of upending conventional models of health care:
- put sophisticated DNA analyses into the hands of consumers,
- giving them information about health, disease and ancestry,
- and allowing the company to sell access to the genetic data to fuel
research.

e In 2013, that vision hit a snag. Wojcicki didn't think she needed regulatory
approval to provide information about her customers' health risks. The
US Food and Drug Administration (FDA) disagreed, and ordered the
company to stop.

(source: https://www.nature.com/news/the-rise-and-fall-and-rise-again-of-23andme-1.22801)
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ETHNIC AND RACIAL STUDIES, 2016
VOL. 39, NO. 2, 142-161 E Routledge

http://dx.doi.org/10.1080/01419870.2016.1105990

Taylor & Francis Group

In the blood: the myth and reality of genetic markers

of identity

Mark A. Jobling®, Rita Rasteiro®” and Jon H. Wetton®®

“Department of Genetics, University of Leicester, Leicester, UK; bSchool of History, University of

Leicester, Leicester, UK

ABSTRACT

The differences between copies of the human genome are very small, but tend
to cluster in different populations. So, despite the fact that low inter-population
differentiation does not support a biological definition of races statistical
methods are nonetheless claimed to be able to predict successfully the
population of origin of a DNA sample. Such methods are employed in
commercial genetic ancestry tests, and particular genetic signatures, often in
the male-specific Y-chromosome or matemally-inherited mitochondrial DNA,
have become widely identified with particular ancestral or existing groups,
such as Vikings, Jews, or Zulus. Here, we provide a primer on genetics, and
describe how genetic markers have become associated with particular groups.
We describe the conflict between population genetics and individual-based
genetics and the pitfalls of over-simplistic genetic interpretations, arguing that
although the tests themselves are reliable, the interpretations are unreliable
and strongly influenced by cultural and other social forces.
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SIGN IN REGISTERKIT  HELP Vv
23andMe
OUR SERVICE HOW IT WORKS v STORIES BUY E

NOW WITH * 3 We are

150+ 4 reinventing the

REGIONS & - : Way you see your
ancestry —

through science.

4

u @® 47.1% Northwest European [

@ 25.2% Chinese ' N Your DNA can tell you more
21.2% Filipino & Austronesian \\‘J o : abo Ut your family hiStO ry.
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NewStatesman

SCIENCE & TECH 15 JANUARY 2015

23andMe: Why bother with predictions
about yourself when you are almost
certainly average?

Want to understand your genes? Call your parents.
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The 23andMe story

e After years of effort, the pay-off came in April 2017,

!_n“” AR LRI AR L)
when the FDA agreed to allow 23andme to tell

! consumers their risks of developing ten medical
conditions, including Parkinson's disease and late-onset

Alzheimer's disease.

e With more than 2 million customers, the company hosts by far the largest
collection of gene-linked health data anywhere

(source: https://www.nature.com/news/the-rise-and-fall-and-rise-again-of-23andme-1.22801)
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From “risk prediction” to “my origin” to “SNP-based genetic tests”

e As we will see, we can measure (genetic) variation between individuals at
several positions on the genome, using so-called molecular markers such as
Single Nucleotide Polymorphisms (SNPs)

e To run a SNP test, scientists can embed a subject's DNA into for instance a
small silicon chip containing reference DNA from both healthy individuals
and individuals with certain diseases.

e By analyzing how the SNPs from the subject's DNA match up with SNPs
from the reference DNA, the scientists can determine if the subject might
be predisposed to certain diseases or disorders.
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Talking about “references”: reference genomes

e A reference genome (also known as a reference assembly) is a digital
nucleic acid sequence database, assembled by scientists as a representative
example of a species' set of genes.

e As they are often assembled from genome (build 37) is derived from
the sequencing of DNA from a thirteen anonymous volunteers
number of donors, reference from Buffalo, New York
genomes do not accurately
represent the set of genes of any ™ 2
single person. Instead a reference .
provides a haploid mosaic of 1 T -
different DNA sequences from
each donor. |

e For example GRCh37' the Genome "Wellcome genome bookcase" by Russ London at en.wikipedia.
Reference Consortium human Licensed under CC BY-5A 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Wellcome_genome_bookc
ase.png#/media/File:Wellcome_genome_bookcase.png
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How many types of genetic tests exist?

e There are >2000 genetic tests available to physicians to aid in the diagnosis
and therapy for >1000 different diseases. Genetic testing is performed for
the following reasons:

— conformational diagnosis of a symptomatic individual

— pre-symptomatic testing for estimating risk developing disease
— pre-symptomatic testing for predicting disease

— prenatal screening

— newborn screening

— preimplantation genetic diagnosis

— carrier screening

— forensic testing

— paternal testing

K Van Steen 16
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How is genetic testing used clinically?

Diagnostic medicine: identify whether an individual has a certain genetic
disease. This type of test commonly detects a specific gene alteration but is
often not able to determine disease severity or age of onset. It is estimated
that there are >4000 diseases caused by a mutation in a single gene.
Examples of diseases that can be diagnosed by genetic testing includes
cystic fibrosis and Huntington's disease.

Predictive medicine: determine whether an individual has an increased risk
for a particular disease. Results from this type of test are usually expressed
in terms of probability and are therefore less definitive since disease
susceptibility may also be influenced by other genetic and non-genetic (e.g.
environmental, lifestyle) factors. Examples of diseases that use genetic
testing to identify individuals with increased risk include certain forms of
breast cancer (BRCA) and colorectal cancer.

K Van Steen 17
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Can you handle the truth?

Identifying Genetic Markers

Service Provider: 23andMe deCODEme Navigenics

Arthritis ® e
Asthma %
Bipolar/Depression

Cardiovascular Disease

Multiple Sclerosis

Osteoporosis

Parkinson's Disease

Schizophrenia

Thrombaosis

Type 1/2 Diabetes
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How is genetic testing used clinically?

e Pharmacogenomics: classifies subtle variations in an individual's genetic
makeup to determine whether a drug is suitable for a particular patient,
and if so, what would be the safest and most effective dose. Learn more
about pharmacogenomics & precision medicine > DNA passports ... are no
longer science fiction!

e Whole-genome and whole-exome sequencing: examines the entire
genome or exome to discover genetic alterations that may be the cause of
disease. Currently, this type of test is most often used in complex
diagnostic cases, but it is being explored for use in asymptomatic
individuals to predict future disease = increasingly feasible by improved
technology + reduced costs = more adequate reference genomes

K Van Steen 19
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Reference genomes based on >> 13 individuals
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Check for
updates
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Citation: deV'ries PS5, Sabater-Lleal M, Chasman
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(2017) Comparison of HapMap and 1000
Genomes Reference Panels in a Large-Scale
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RESEARCH ARTICLE
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1.b Speaking the language
What is genetic epidemiology?

“ .. Examining the role of genetic factors, along with the environmental
contributors to disease, and at the same time giving equal attention to
the differential impact of environmental agents, non-familial as well
as familial, on different genetic backgrounds”

“It is the discipline investigating genetic and environmental factors that
influence the development and distribution of diseases. It differs from
epidemiology in that explicitly genetic factors and similarities within
families are taken into account. On the other hand, it can be
distinguished from medical genetics by considering populations rather
than single patients or families.”

(Ziegler and Van Steen, Brazil 2010)
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What is genetic epidemiology?

Hard to define!

A science that deals with the etiology, distribution and
control of disease-related phenotypes in groups of
relatives, and with inherited causes of disease-related
phenotypes in populations

+

(IGES presidential address A Ziegler, Chicago 2013)

Statistical methodology
Genome-wide association studies
Next generation sequencing
Gene-environment interaction
Family studies

Risk score

Predictive markers & pharmacogenetics
Microbiome

Epigenetics

eQTL

Other Omics

K Van Steen
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What are the key concepts in genetic epidemiology?

Genetic Epidemiology 1

Key concepts in genetic epidemiology

Paul R Burton, Martin D Tobin, John L Hopper

This article is the first in a series of seven that will provide an overview of central concepts and topical issues in
modern genetic epidemiology. In this article, we provide an overall framework for investigating the role of familial
factors, especially genetic determinants, in the causation of complex diseases such as diabetes. The discrete steps of
the framework to be outlined integrate the biological science underlying modern genetics and the population science
underpinning mainstream epidemiology. In keeping with the broad readership of The Lancet and the diverse
background of today’s genetic epidemiologists, we provide introductory sections to equip readers with basic concepts
and vocabulary. We anticipate that, depending on their professional background and specialist knowledge, some

readers will wish to skip some of this article.

What is genetic epidemiology?

Epidemiology is usually defined as “the study of the
distribution, determinants [and control] of health-
related states and events in populations”.' By contrast,
genetic  epidemiology means different things to
different people.” We regard it as a discipline closely
allied to traditional epidemiology that focuses on the
familial, and in particular genetic, determinants of
disease and the joint effects of genes and non-genetic
determinants. Crucially, appropriate account is taken of
the biology that underlies the action of genes and the

dose. The marker and the causative variant need not be
within the same gene. This principle is the basis of
genetic linkage analysis (see a later paper in this series®),
which has achieved many of the breakthroughs in the
genetics of disease causation. Many such breakthroughs
involve conditions caused by variants in a single gene
and have been achieved by geneticists and clinical
geneticists who would not view themselves as genetic
epidemiologists. Nevertheless, linkage analysis is one of
the most important tools available to the genetic
epidemiologist.

Lancet 2005; 366: 341-51
See Comment page 330

This is the firstin a Series of
SEVEN PAPETS 0N genetic
epidemiology.

Department of Health Sdences
and Department of Genetics,
University of Leicester,
Leicester, UK

(Prof PR Burton MO,

M [ Tobin PhD); and Centre for
Genetic Epidemiology,
University of Melboums,
Melbourne, Victoria, Australia
(Prof | L Hopper PhD)

Comespondence to:

Prof Faul R Burton, Department
of Health Sciences, Linfversity of
Laicaster, 22- 28 Princess Road
‘West, Leicester LE1 6TF, UK
pbs1@le.acuk
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What are relevant questions in genetic epidemiology?

Recurmence risk ratios 1s there evidence of phenotypic
Correlations SEEmEN aggregation within families?
¢ Fes
Vatiance components 15 the pattermn of comelation consistent
Heritahility pmmmRR with a possible effect of genes? ;}

L Yes

Is it likely that there is a gene present
Segregation analysis | ® W ® @ m w |[With @ lasge cnough SHECE IO make it >
Ne

worthwhile dedicating expensive
resources trving w identify it?

¢ Yex

Where in the genome is it most likely

Linkage analysis EEEEEN that such a gene lies?
¢ Expression siudies
Linkage disequilibrivm mapping Can we be more precise about where it lies? Functional work
Asgociation analysis . Can we identily a cavsative polymorphism? >
Fes Irugldiagnostic test
development

(Handbook of Statistical Genetics - John Wiley & Sons; Fig.28-1)
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Where is the genetic information located?

e Cell has nucleus

e Nucleus carries genetic information in chromosomes

e Chromsomes composed of desoxyribonucleic acid (DNA) and
proteins

e DNA large molecule consisting in two strands

e Each strand has backbone of sugar and phosphate residues

e Sequence of bases attached to backbone
e Bases: adenine (A), guanine (G), cytosine (C), thymine (T)
e Strands connected through hydrogen bonds

o Awith T (2 hydrogen bonds)

o C with G (3 hydrogen bonds)

(Ziegler and Van Steen, Brazil 2010)
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Where is the genetic information located?

e Chromosomes are

o Linear arrangements of DNA
o 22 autosomal pairs in humans

o 2 sex chromosomes (X and Y)
e Pair of chromosomes called homologs
e Meiosis: special type of cell division
e Crossover: chromosomal segment exchange between homologs
during meiosis
e Average # crossovers: 55 x in males, 1.5 x higher in females

(Ziegler and Van Steen, Brazil 2010)
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TELOMERE

SHORT ARM (P)

CENTROMERE

LONG ARM (Q)

SISTER CHROMATIDS

Photon Illustration/Stocktrek Images/Getty Images

In humans, males have lower recombination rates than females over the
majority of the genome, but the opposite is usually true near the telomeres
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Result of crossover: recombination in meiotic products

a) Al A2 Al A2 Al A2
—-
B1 B2 B1 B2 B2 B1 B1
T o T/

e Relevant measure: recombination fraction (probability of odd
number of crossovers) between two chromosomal positions

e Strong correlation between recombination fraction and distance in
base pairs

(Ziegler and Van Steen, Brazil 2010)
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How much do individuals differ with respect to genetic information?

e Allele: one of several alternative forms of DNA sequence at specific
chromosomal location (locus)

e Genetic marker: polymorphic DNA sequence at single locus

e Polymorphism: existence of > 2 alleles at single locus

e Homozygosity (homozygous): both alleles identical at locus

e Heterozygosity (heterozygous): different alleles at locus

e Mutation:
o Changes allele at specific chromosomal position

o Frequency =~ 10™ to 10° = Individuals differ with freq. of 1/1000 bases

(Ziegler and Van Steen, Brazil 2010)
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How much do individuals differ with respect to genetic information?

e Genotype: The two alleles inherited at a specific locus. If the alleles are the
same, the genotype is homozygous, if different, heterozygous. In genetic
association studies, genotypes can be used for analysis as well as alleles or
haplotypes.

e Haplotype: Linear arrangements of alleles on the same chromosome that
have been inherited as a unit. A person has two haplotypes for any such
series of loci, one inherited maternally and the other paternally. A
haplotype may be characterized by a single allele

4

@ MITT THN NEN BE)

http://www.dorak.info/epi/glosge.html
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How can individual differences be detected? Mimic PCR
1st cycle: template DNA
5 — 3
—

target sequence

1st step: Denaturation
100°C

55— Em

2nd step: Hybridization

e ——

3rd step: Elongation

—— e |-

(Ziegler and Van Steen, Brazil 2010)

K Van Steen
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What are biomarkers?

e A biological marker, or biomarker, is something that can be
measured, which points to the presence of a disease, a physiological
change, response to a treatment, or a psychological condition.

e A molecular biomarker is a molecule that can be used in this way.
Recall that DNA is a molecule! = genetic markers = polymorphic
DNA sequences at a locus

e Biomarkers are used in different ways at different stages of
medicines development, including in some cases as a surrogate
endpoint to indicate and measure the effect of medicines in clinical
trials = also genetic markers

(www.eupati.eu)
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The biomarker development process

Validation/Evaluation

Discovery

Confirmation in an
independent sample set

f |

Observational < Biomedical
clinical studies research

|

Basic
Science

oo Jeof 2o, |t Jo e,
y i R

- Er_ddéfﬂk"l‘:"g'cal1 [ Analysis of candidate ]

Translational

Fa s

Diagnosis

avidence biomarkers
|
Blnsp-eclme ns

Call Animal Clinical
lines models trials

I !

Clinical Science

Geanome
Transcriplome
Epiganome
Microbicme
Metabolome
Protecme
Exposome
Mon-omics anahytical
plataforms

(Quezada et al. 2017)
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What are the most popular genetic markers?

Single Nucleotide Polymorphisms (SNPs)

e Variations in single base, i.e., one base substituted by another base
e |In theory: four different nucleotides possible at base
e |n practice: generally only two different nucleotides observed

e Definition strict and loose:

o Strict: minor allele frequency > 1%

o Loose: 2 2 nucleotides observed in two individuals at position
e Nomenclature:

o ss-number (submitted SNP number)
o rs-number: searchable in dbSNP, mapped to external resources, unique
o rs-numbers do not provide information about possible function of SNP

o Alternative: nomenclature of Human Genome Variation Society

(Ziegler and Van Steen, Brazil 2010)
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Do SNPs capture differences between human genomes?

e Any two people plucked at random off the street are on average 99.9
percent the same, DNA-wise (> 3 million positional differences)

e Most genome variations are
relatively small and simple,
involving only a few bases—an

A substituted for a T here, a G gas Palts
(I

Adenine Thymine

left out there, a short sequence

such as CG added somewhere

l

else

Guanine  Cytosine

Sugar phosphate
backbone

(U.S. National Library of Medicine)
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Common genetic variations MAF (minor allele frequency)

Single Frequency in
Nucleotide general
i Polymorphisms | population
(SNPs)
Adenine  Thymine \
ol

— )

Guanine  Cytosine

Sugar phosphate
backbone

A 5% > 1%
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What is the central dogma of molecular biology?
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Information is everywhere: the programming of life

http://www.youtube.com/watch?v=00vBqYDBW5s

“Information:

that which can be communicated through symbolic language”

Van Steen K
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What are genes?

Splicing Is carcied out by a very complex enzyme machinery: the spliceosome. In the
spliceasome, proteins as well as RNA molecules are found that form complexes: the small
nuclear ribonucieoproteins or snANPS (snurps), These recognize specifiic sequences on the
borders of an intron, cut the ends, refease the intron and ligate the remaining exons.

Defining genes by their structure

Structure of g Gene

Exon Eoon 3 Exam 3 Exar 4
Posnie 1 MY ™ el ™ e Ll | r '
Cheve (DA
‘
Pamary armirpt RN

‘Mm

Motos SIL2ASSD

Matwe Tarnorgt | RNA) L

CWh oo L

Smplifed overview of gene struciure and expression (for cubkaryotes). 4
PN 00BN perd % delinad by the aatent of The rmary Tamcogs, The gene i
Argt Sranscnibad 10 piedd & grimary IANCHPT, WAKR 4 gracessad 10 remicve the
ntrovs. The rmaturd anaanigt (mecsenger RNA, mRNA) & then transsted ovio 3
Sequance of amize acsdn, whach defices tte iatan. The chae of aming scss
st Tl ap t9 oenarate 5he Rl Bartiny shvuctare of the grateen
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What are genes?

e The gene is the basic physical unit

of inheritance.

e Genes are passed from parents to

offspring and contain the
information needed to specify
traits.
e They are arranged, one after
another, on the chromosomes
e Chromosomes are not taken
entirely by genes.

Defining genes as units of inheritance

ellfune HlMuuwy
li LRI B i AR b

1 12 10 11 12

g8 BF B8 BB B0 i 88 88 10 33 &0

15 16 17 _18 HORE TR SR B ] 7881 8

OB W o1 BB
X X

1920 R D (Re=20

X Tmem
< mD

child

R

2 3 4 5 6

IR BRI

1012

55 3¢ 88 83 B8 B0

14 15 16 17 18

IR R r
19 XY

20 21 22

(Figure : Human chromosomes)
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What is gene annotation?

e An annotation (irrespective of the context) is a note added by way of
explanation or commentary.

e Genome annotation is the process of identifying the locations of genes and
all of the coding regions in a genome and determining what those genes do.

e Once a genome is sequenced, it needs to be annotated to make sense of it
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What is gene regulation? revised version of central dogma

I g\?dlif
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How to hunt for genes to answer relevant questions ?

e Developing new and better tools to make gene hunts faster, cheaper and
practical for any scientist was a primary goal of the Human Genome Project
(HGP).

e One of these tools is genetic mapping, the first step in isolating a gene.
Genetic mapping — in the early days - can offer firm evidence that a disease
transmitted from parent to child is linked to one or more genes. It also
provides “clues” about where the gene lies.

e Genetic maps have been used successfully to find the single gene
responsible for relatively rare inherited disorders, like cystic fibrosis, but
have also been useful as a guide to identify the possible many genes
underlying more common disorders, like asthma.
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How to generate a genetic map?

e |nitially, to produce a genetic map, researchers collect blood or tissue
samples from family members where a certain disease or trait is prevalent.

e Using various laboratory techniques, the scientists isolate DNA from these
samples and examine it for the unique patterns seen only in family
members who have the disease or trait.

e Before researchers identify the gene responsible for the disease or trait,
DNA markers can tell them roughly where the gene is on the chromosome.

How is this possible?
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How to generate a genetic map? (continued)

e This is possible because of recombination, the process we have introduced
before.

As eggs or sperm develop within a person’s body, the 23 pairs of
chromosomes within those cells exchange - or recombine - genetic
material. If a particular gene is close to a DNA marker, the gene and
marker will likely stay together during the recombination process, and
be passed on together from parent to child. So, if each family member
with a particular disease or trait also inherits a particular DNA

marker, chances are high that the gene responsible for the disease lies
near that marker.
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How to generate a genetic map? (What is Linkage Disequilibrium — LD?)

Linkage Within A Family Linkage Disequilibrium Within A Population
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How to generate a genetic map? (What is Linkage Disequilibrium — LD?)
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How to generate a genetic map? (continued)

e The more DNA markers there are on a genetic map, the more likely it is that
one will be closely linked to a disease gene - and the easier it will be for
researchers to zero-in on that gene.

e One of the first major achievements of the HGP was to develop dense
maps of markers spaced evenly across the entire collection of human
DNA.

(http://www.genome.gov/100007154al-3)
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1.c “The Human Genome Project”

nome.gov

i 95 4
%W National Human Genome Research Institute

National Institutes of Health
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Home > Education > All About The Human Genome Project (HGP)

»

All About The Human
Genome Project (HGP)

Education Archive

Fact Sheets

Genetic Education Resources for  »
Teachers

INHGRI Webinar Series 4
National DNA Day »

Online Genetics Education Resources

Smithsonian NHGRI Genome: >
Exhibition

Talking Glossary

Understanding the Human »
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All About The Human Genome Project (HGP)

The Human Genome Project (HGP) was one of the great feats of
exploration in history - an inward voyage of discovery rather
than an outward exploration of the planet or the cosmos; an
international research effort to sequence and map all of the
genes - together known as the genome - of members of our
species, Homo sapiens. Completed in April 2003, the HGP gave
us the ability, for the first time, to read nature's complete
genetic blueprint for building a human being.

In this section, you will find access to a wealth of information on the history of the HGP,

its progress, cast of characters and future.

© Educational Resources
© General Information
@ Research

© Model Organisms

Educational Resources

* An Interactive Timeline of the Human Genome [unlockinglifescode.org]

Share

See Also:

Youf{[l) White House
Announcement
June 26, 2000

Extramural Research
Program

Other Federal Agencies
Involved in Genomics
On Other Sites:

Human Genome Resources
Access to the full human
sequence

An interactive, hyper-linked timeline of genetics that takes the reader from Mendel (1865) to the completion of

the mapping of the human genome (2003).

* The Human Genome: A Decade of Discovery, Creating a Healthy Future

A workshop for science reporters about the 10th anniversary of the completion of the draft sequence of the

human genome and to look at the future of genomic research.

« Understanding the Human Genome Project
NHGRI's Online Education Kit

* An Overview of the Human Genome Project
A brief overview of the HGP.

* 50 Years of DNA: From Double Helix to Health
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Historical overview (interludium)

Gregor Mendel, the father of ©

modern genetics, presents his
research on experiments in
plant hybridization

Gregor Mendel, a 19th century Augustinian monk, is called the
father of modern genetics. He used a monastery garden for
crossing pea plant varieties having different heights, colors, pod
shapes, seed shapes, and flower positions. Mendel's
experiments, between 1856 and 1863, revealed how traits are
passed down from parents. For example, when he crossed
yellow peas with green peas, all the offspring peas were yellow.
But when these offspring reproduced, the next generation was
/s yellow and Y4 green. Mendel's work, which was presented in
1865, showed that what we now call “genes” determine traits in
predictable ways.
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Historical overview

James Watson and Francis
Crick discover the double
helix structure of DNA

When Francis Crick and James Watson modeled the structure
of DNA, they used paper cutouts of the bases (A, C, G, T) and
metal scraps from a machine shop. Their model represented
DNA as a double helix, with sugars and phosphates forming the
outer strands of the helix and the bases pointing into the
center. Hydrogen bonds connect the bases, pairing A-T and
C-G; and the two strands of the helix are parallel but oriented
in opposite directions. Their 1953 paper notes that the model
“immediately suggests a possible copying mechanism for the
genetic material.”
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Historical overview

Marshall Nirenberg cracks thee
genetic code for protein
synthesis

In the early 1960s, Marshall Nirenberg and National Institutes
of Health colleagues focused on how DNA directs protein
synthesis and the role of RNA in these processes. Their 1961
experiment, using a synthetic messenger RNA (mRNA) strand
that contained only uracils (U), yielded a protein that contained
only phenylalanines. Identifying UUU (three uracil bases in a
row) as the RNA code for phenylalanine was their first
breakthrough. Within a few years, Nirenberg’'s team had
cracked the 60 mRNA codons for all 20 amino acids. In 1968,
Nirenberg shared the Nobel Prize in Physiology or Medicine for
his contributions to breaking the genetic code and
understanding protein synthesis.

1961
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Historical overview

Frederick Sanger develops 9

rapid DNA sequencing
technique

In 1977, Frederick Sanger developed the classical “rapid DNA
sequencing” technique, now known as the Sanger method, to
determine the order of bases in a strand of DNA. Special
enzymes are used to synthesize short pieces of DNA, which end
when a selected “terminating” base is added to the stretch of
DNA being synthesized. Typically, each of these terminating
bases is tagged with a radioactive marker, so it can be
identified. Then the DNA fragments, of varying lengths, are
separated by how rapidly they move through a gel matrix when
an electric field is applied — a technique called electrophoresis.
Frederick Sanger shared the 1980 Nobel Prize in Chemistry for
his contributions to DNA-sequencing methods.

1977
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Historical overview

(X

First genetic disease mapped,
Huntington's Disease

Huntington's disease (HD) causes the death of specific neurons
in the brain, leading to jerky movements, physical rigidity, and
dementia. Symptoms usually appear in midlife and worsen
progressively. The location of the HD gene, whose mutation
causes Huntington’s disease, was mapped to chromosome 4 in
1983, making HD the first disease gene to be mapped using
DNA polymorphisms — variants in the DNA sequence. The
mutation consists of increasing repetitions of “CAG” in the DNA
that codes for the protein huntingtin. The number of CAG
repeats may increase when passed from parent to child,
leading to earlier HD onset in each generation. The gene was

finally isolated in 1993.
1983
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Historical overview

Invention of polymerase -

chain reaction (PCR)
technology for amplifying
DNA

Conceived in 1983 by Kary Mullis, the Polymerase Chain
Reaction (PCR) is a relatively simple and inexpensive technology
used to amplify or make billions of copies of a segment of DNA.
One of the most important scientific advances in molecular
biology, PCR ampilification is used every day to diagnose
diseases, identify bacteria and viruses, and match criminals to
crime scenes. PCR revolutionized the study of DNA to such an
extent that Dr. Mullis was awarded the Nobel Prize in Chemistry

in 1993.
1983
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Historical overview

® O

0 O

First evidence provided for ©

the existence of the BRCA1l
gene

BRCA1 (BReast CAncer gene 1) is a “tumor suppressor gene,”
which normally produces a protein that prevents cells from
growing and dividing out of control. However, certain variations
of BRCA1L can disrupt its normal function, leading to increased
hereditary risk for cancer. The first evidence for existence of the
BRCAL gene was provided in 1990 by the King laboratory at
University of California Berkeley. After a heated international
race, the gene was finally isolated in 1994. Today, researchers
have identified more than 1,000 mutations of the BRCA1 gene,
many of them associated with increased risk of cancer,
particularly breast and ovarian cancers in women.

1990
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Historical overview

7

-

o

The Human Genome Project
begins

Beginning in 1984, the U.S. Department of Energy (DOE),
National Institutes of Health (NIH), and international groups
held meetings about studying the human genome. In 1988, the
National Research Council recommended starting a program to
map the human genome. Finally, in 1990, NIH and DOE
published a plan for the first five years of an expected 15-year
project. The project would develop technology for analyzing
DNA; map and sequence human and other genomes —
including fruit flies and mice; and study related ethical, legal,

and social issues.
1990
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Historical overview

The Sequence of the Human Genome
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The sequence of the Human Genome — a milestone in modern medicine

e InJune 2000 came the announcement that the majority of the human genome had in fact
been sequenced, which was followed by the publication of 90 percent of the sequence of
the genome's three billion base-pairs in the journal Nature, in February 2001

e Surprises accompanying the sequence publication included:

— the relatively small number of human genes, perhaps as few as 30,000-35,000;
Note: 100,000 - 30,000-35,000 - 24,000 - 19,000-20,000

— the complex architecture of human proteins compared to their homologs - similar
genes with the same functions - in, for example, roundworms and fruit flies;

— the lessons to be taught by repeat sequences of DNA.
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Historical overview

" genome.gov
I' National Human Genome Research Ins
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News About the Human Genome Project

Links to news releases announcing key moments in the hist

O 1994
O 1996 2004
O 1998 March 24, 2004: International Sequencing Consortium Launches Online Resource
O 1999 The National Human Genome Research Institute announces that the International Sequencing Consortium (ISC) has launched a free, online resource
D — where scientists and the public can get the latest information on the status of sequencing projects for animal, plant and other eukaryotic genomes.
O 2001 March 31, 2004: Scientists Compare Rat Genome With Human, Mouse

An international research team, supported by the National Institutes of Health (NIH), today announced it has completed a high-quality, draft sequence
© 2003 of the genome of the laboratory rat, and has used that data to explore how the rat's genetic blueprint stacks up against those of mice and humans.
O 2004

April 21, 2004: NHGRI Scientists Return to the Classroom For Second Annual National DNA Day
On April 30, dozens of researchers and staff from the National Human Genome Research Institute (NHGRI) will head back to high schools in rural and
urban communities across the country to share with students some of the exciting research taking place at the National Institutes of Health (NIH).

October 14, 2004: NHGRI Seeks Next Generation of Sequencing Technologies
The National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH), today announced it has awarded more than

%38 million in grants to spur the development of innovative technologies designed to dramatically reduce the cost of DNA sequencing, a move aimed at
broadening the applications of genomic information in medical research and health care.

October 20, 2004: International Human Genome Sequencing Consortium Describes Finished Human Genome Seguence

The I ) ome Sequencing Consortium, led in the United States by the National Human Genome Researc =
Department of Energy (DOE), today published its scientific description of the finished human genome sequence, reducing the estimated number of
reHRan protein-coding genes from 35,000 to only 20,000-25,000, a surprisingly low number for our species. "
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Historical overview

genome.gov
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%W National Human Genome Research Institute
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Online Education Kit: 2004-The Future

2004a: Rat and Chicken Genomes Sequenced

2004b: FDA Approves First Microarray

2005: HapMap Project Completed £ share | erin

The International HapMap Consortium published a catalog of human genetic variation that is expected

2 L : : : See Also:
b= anttiaad g il | Seemachas acthma cancer,

2004c: Refined Analysis of n
Genome Sequenc

2004d: Surgeon General Stress

2005 . |
Consortium Completes Ma

diabetes, and heart disease. While the Human Genome Project focused on the DNA sequence from a
single individual, the HapMap project focused on variation in the genome and on human populations.
The $138 million project was a three-year collaboration between more than 200 researchers from

International Ha

of Family History

2005a: Chimpanzee Genomes Sequenced
2005b: HapMap Project Completed
2005c: Trypanosomatid Genomes Sequenced
2005d: Dog Genomes Sequenced

2006a: The Cancer Genome Atlas (TCGA)
Project Started

2006b: Second Non-human Primate Genome
is Sequenced

2006¢: Initiatives to Establish the Genetic and
Environmental Causes of Common Diseases
Launched

The Future

anad bio nan DNigeria and the 1lnited ate he new nanor doccoibod tb pletorrota

g g o ’ o ] On Other Sites:
Phase I HapMap that contains more than 1 milion markers of genetic variation. At the time of the
publication, the consortium was nearing completion of a Phase II HapMap that would contain more

than 3 million genetic markers.

International HapMap Project
Web page for the International
HapMap Consortium

More Information
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Historical overview

BREAKTHROUGH OF THE YEAR

Human

Senetic |

Variation

Equipped with faster, cheaper technologies for sequencing

DNA and assessing variation in genomes on scales ranging /«
from one to millions of bases, researchers are finding out > N
how truly different we are from one another ;

THE UNVEILING OF THE HUMAN GENOME ALMOST 7 YEARS AGO

cast the first famt ight on our complete genetic makeup. Since then, each
new gemme sequenced and each new ndividual studied has luminated
our genomic landscape mever more detail. In 2007, researchers cameto
apprecide the extent to which our genomes differ from person to person
andthe implications of this vanation fordeaphenng the genetes of com-

plex diseases and personal traits.

Less than a year ago, the big news was triangulating variation
between us and our pimate cousins to get a better handle on genetic
changes along the evolutionary tree that led to humans. Now, we have
moved from asking what in our DNA makes us human to striving to

know what in my DNA makes me me.

Inversion Insertion

What makes us unique. Changes in
the number and order of genes (A-D)
add variety to the human genome.

Pennisi 2007 Science 318:1842-3

(806>

Delation Copy number variation
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2007 SCIENTIFIC BREAKTHROUGH OF THE YEAR

Chromosome 1
Chromosome 2
Chromosome 3
Chromosome 4

Science Magazine, December 21, 2007

“It’s all about me!”

Single Nucleotide Polymorphisms
(SNPs)

SNP SNP
v v

AACACGCCA.... TTCGGGGTC....
AACACGCCA.... TTCGAGGTC....
AACATGCCA.... TTCGGGGTC....
AACA GCCA....TTCG GGTC....
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Historical overview: associating genetic variation to disease outcomes

BREAKTHROUGH OF THE YEAR: The Runners-Up

Science 314, 1850a (2006);
DOI: 10.1126/science.314.5807.1850a

AYAAAS

Areas to Watch in 2007

Whole-genome association studies. The trickle of studies comparing the
genomes of healthy people to those of the sick is fast becoming a flood.
Already, scientists have applied this strategy to macular degeneration,
memory, and inflammatory bowel disease, and new projects on schizo-
phrenia, psoriasis, diabetes, and more are heating up. But will the wave of
data and new gene possibilities offer real insight into how diseases germi-
nate? And will the genetic associations hold up better than those found the
old-fashioned way?
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Historical overview: GWAs as a tool to “map” diseases

ILIRLY, IL18RT
IL1BRAP. SLC9A4

2008 third

IKZF4, ERBB3
CDK2, ERBB3
Type 1 Diabetes.

KIFSA-PIP4K2C
Rheumatoid athritis

TRAF1-C5
Rheumatoid athritis
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Historical overview: 210 traits — multiple loci (sites, locations)

Published Genome-Wide Associations through 12/2010,
1212 published GWA at p<5x10-8 for 210 traits

NHGRI GWA Catalog
www.genome.gov/IGWAStudies "
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Historical overview: trait categories

Published Genome-Wide Associations through 12/2013

Published GWA at ps5X10°< for 17 trait categories Digestive system disease

Cardiovascular disease

Metabolic disease

Immune system disease

Nervous system disease

Liver enzyme measurement

Lipid or lipoprotein measurement
Inflammatory marker measurement
Hematological measurement
Body measurement
Cardiovascular measurment
Other measurement

Response to drug

Biological process

Cancer

Other disease

Other trait

0000000000000 0OO®

Uit
N
o
4
§

NHGRI GWA Catalog
" eeesmes Www.genome.gov/GWAStudies
2"..‘.'."'.."“"‘ www.ebi.ac.uk/fgpt/gwas/
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Historical overview: trait categories and nr of SNPs

Date: 3/3/2020
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Historical overview: inter-relationships (networks)

. Type 1 diabetes (36)

. Multiple sclerosis (36)

. ADHD and conduct disorder (33)
. Crohn’s disease (27)

. Type 2 diabetes (22)

. Celiac disease (19)

. Ulcerative colitis(17)

. Systemic lupus erythematosus (17)
. Prostate cancer (17)

10. Rheumatoid arthritis (13)

11. Breast cancer (12)

12. Lung cancer (11)

OCONOOOPLWN =

(Barrenas et al 2009: complex disease network — nodes are diseases)

m Cardiovascular diseases (Cv)

~= Digestive system diseases

== Endocrine system diseases

I Eye diseases

=2 Immune system diseases (Is)

® Mental disorders

== Multiple diseases

® Musculoskeletal diseases (Ms)

= Ms, Sc, Is

™ Neoplasms

= Nervous system diseases (Ns)

== Ns, Cv

™ Ns |s

= Ns, Ms
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== Skin and connective tissue disease
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Historical overview: inter-relationships (networks)

B v °® A Intracranial aneurysm

1. HLA-DQAT1 (5)

?’A; Cpronary 2. HLA-DRB1 (4)
. . foRenos _ ] = 39y disease 3. CDKN2A (4)
Celiac disease WZ L £ ! 4. CDKN2B (4)
"i ® 5. IL23R (3)
AN 6. HLA-E (3)

I

Alzheimer’ o N : . .;/ .
disease ,/’ ‘,‘. é
. y 5> \
P.arklnsons .‘@wi >
disease V./‘;/,
-= u.

»

Schizophrenia

Chronic lymphocytic
leukemia

(Barrenas et al 2009: complex disease GENE network — nodes are genes)
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Historical overview: exome sequencing, full genome sequencing
(BN o owb® ____ Smoows
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Historical overview: monitoring the progress

& NCBI  Resources ¥ HowTo ™

OMIM OMIM v

Limits Advanced

Using OMIM

Getting Started
FAQ

Last updated on: 05 Oct 2014

OMIM

OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and
updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins

University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is omim.org.

OMIM tools Related Resources
OMIM API ClinVar

Gene

GTR

MedGen

Sign in to NCBI

Help
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OMIM: molecular dissection of human disease

e Online Mendelian Inheritance in Man (OMIM®) is a continuously updated
catalog of human genes and genetic disorders and traits (i.e. coded
phenotypes, where phenotype is any characteristic of the organism), with particular
focus on the molecular relationship between genetic variation and
phenotypic expression.

e |t can be considered to be a phenotypic companion to the Human Genome
Project. OMIM is a continuation of Dr. Victor A. McKusick's Mendelian
Inheritance in Man, which was published through 12 editions, the last in
1998.

e OMIM is currently biocurated at the McKusick-Nathans Institute of Genetic
Medicine, The Johns Hopkins University School of Medicine.

e Frequently asked questions: http://www.omim.org/help/faq
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Accessing OMIM
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Finding the trees for the forest

:j NCBI Resources [¥) How To [V Sign in to NCBI

MedGen 'MedGen VHasthma | | w

Create alert Limits Advanced Help

Filter your results:
All (319)
Records in GTR (76)

See MedGen results with asthma as a clinical feature (41)

Summary ~ 20 per page = Send to: =

Records in OMIM (68)
Diseases (172)

Search results

Items: 9 Records in Orphanet (27)
Records in HPO (9)

[ Asthma Recommended for clinicians

1. A chronic respiratory disease manifested as difficulty breathing due to the narrowing of bronchial (77)

passageways. [from NCI| Manage Filters
MedGen UID: 2109 « Concept ID: C0004096 + Disease or Syndrome

GTR ClinVar
Find related data =
U  Exercise-induced asthma Database: | Select v
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Finding the trees for the forest (click on “Asthma”)

:j NCBI Resources ¥/ How To (V)

Sign in to NCBI

MedGen MedGen I

Limits Advanced

Full Report = Send to: =

Asthma
MedGen UID: 2109 « Concept ID: C0004096 » Disease or Syndrome

Synonyms: Bronchial asthma; Reactive airway disease

SNOMED CT: Airway hyperreactivity (195967001); Asthmatic (195967001); Bronchial asthma (195967001);
Asthma (195967001)

HPO: HP:0002099

~| Definition Go to:

A chronic respiratory disease manifested as difficulty breathing due to the narrowing of bronchial passageways. [from
NCI]

« Term Hierarchy Go to:

¥ Diseases, Respiratory Tract

Help

Table of contents
Definition

Term Hierarchy

Conditions with this feature
Recent clinical studies

Recent systematic reviews

Genetic Testing Registry

Deletion/duplication analysis (18)

Sequence analysis of the entire coding

74
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Finding the trees for the forest (Click on ClinVar)

ClinVar ClinVar v\||Search ClinVar for gene symbols, HGVS expressions, conditions, and mor | w
Advanced Help

Home About ¥ Access ¥ Help * Submit ¥ Statistics ¥ Bl

Clinical Tabular « 100 per page = Sort by Relevance = Download: «
significance S
Conflicting |
interpretations (0) Links from MedGen D
Benign (0) E
Likely benign (0) ltems: 12 B
Uncertain A
significance (6) R
Likely pathogenic (3) -
Pathogenic (2) Variation Gene(s) Protein Condition(s) . ?;;;:;a:ce Review Acct
Risk factor (1) Location change (Lgst roviewsd) status
Molecular [0 NM_001145775.2(FKBP5):c.106-2332 FKBP5 Asthma risk factor ~ no VCV00
conseq u.ence 1. A>C (Jun20,2019)  assertion
Frameshitt (1) GRCh37: Chr6:35607267 criteria
Missense (0) GRCh38: Chr6:35639490 provided
Nonsense (0)
Splice site (0) O 46:XY:t(1:14)(g42:913) Exotropia, Split foot, Chronic Uncertain criteria VCV00
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Finding the trees for the forest (click on the gene)

& NCBI Resources ¥ How To ¥ Sign in to NCBI

Gene Gene vH| | w

Advanced Help

Full Report « Send to: = Hide sidebar >>

-

Table of contents

FKBP5 FKBP prolyl isomerase 5 [ Homo sapiens (human) ]

Summary

Gene ID: 2289, updated on 28-Feb-2020 )
Genomic context

+ Summary 1.7 Genomic regions, transcripts, and
products
Official Symbol FKBP5 provided by HGNC Expression

Official Full Name FKBP prolyl isomerase 5 provided by HGNC
Primary source HGNC:HGNC:3721

See related Ensembl:ENSG00000096060 MIM:602623 Phenotypes

Gene type protein coding

Bibliography

Variation
RefSeq status REVIEWED
Organism Homo sapiens Pathways from PubChem
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Interactions
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Finding the trees for the forest (scroll down for genomic context etc)

x| Genomic context ~ 5 Variation Viewer (GRCh37.p13)
Variation Viewer (GRCh38)
See FKBPS5 in Genome Data Viewer
Location: 6p21.31 1000 Genomes Browser

(GRCh37.p13)
Exon count: 13

Ensembl
i UcscC
Annotation Status Assembly Chr Location
release
109.20191205 current GRCh38.p13 6 NC_000006.12 ] ]
(GCF_000001405.39) (35573585..35728583, complement) | rcelated information
. Order cDNA clone
105 previous GRCh37.p13 6 NC_000006.11
assembly (GCF _000001405.25) (35541362..35696360, complement) 3D structures

BioAssay by Target (List)
Chromosome 6 - NC_000006.12

[ 35497874 p (38774263 p BioAssay by Target (Summary)
TULPL - RPS15AP19 RPL3GPS HIRS690 LOC285347 ' BioAssay, by Gene target
LOC101929309 ARMC12
FKEPS BioAssays, RNAI Target, Tested
LOC1 12267956 LOC100652794

BioProjects
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Finding the trees for the forest (additional phenotypes and markers)

»
>

“ Phenotypes

BioGRID CRISPR Screen Phenotypes (2 hits/791 screens)

Review eQTL and phenotype association data in this region using PheGenl

Associated conditions

Description Tests

Major depressive disorder

MedGen: C1269683, OMIM: 608516, GeneReviews: Not available

Compare labs

»
5

-~ Variation

See variants in ClinVar

See studies and variants in dbVar
See Variation Viewer (GRCh37.p13)
See Variation Viewer (GRCh38)
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Finding the trees for the forest (click on GTR instead of ClinVar)

& NCBI Resources ¥ How To ¥ Sign in to NCBI

GTR:GENETIC TESTING REGISTRY

C0004096[DISCUI] ‘ Tests

Advanced search for tests

Tests Conditions Genes Laboratories
(18) (1) (1) (1)

Results: 1 to 18 of 18

Filters
¥ Test type Tests names and labs Conditions | S5 8" | Miethods
analytes
CIClinical (18)
Hyper-IgE Syndrome NGS Panel 30 ) D Deletion/duplication analysis
Test purpose Fulgent Genetics C Sequence analysis of the entire coding
[IDiagnosis (18) United States region
I Mutation Confirmation (18)
B-Negative Severe Combined 3 13 D Deletion/duplication analysis
¥ Test method

Immunodeficiency NGS Panel

C Sequence analysis of the entire coding
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2 The rise of GWAs

(slide Doug Brutlag 2010)
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What are GWASs?

o A genome-wide association study is an approach that involves rapidly
scanning markers across the complete sets of DNA, or genomes, of many
people to find genetic variations associated with a particular trait.

e Recall: a trait can be defined as a coded phenotype, a particular
characteristic such as hair color, BMI, disease, gene expression intensity
level, ...
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Genome-wide association studies: basic principles

The genome-wide association study is typically (but not solely!!!) based on a
case-control design in which single-nucleotide polymorphisms (SNPs) across

the human genome are genotyped ...

(Panel A: small fragment)

A

Chromosome 9 - :ﬂ—‘~

— Personl

— Person2

— Person3
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Genome-wide association studies: basic principles

B SNP1 SNP2
Cases Initial discovery study .4l e Initial discovery study 1
vy P=1x10-12 . L8 2o P=1x10% aasa

Common Variant

homozygote i Heterozygote homozygote

e Panel B, the strength of association between each SNP and disease is
calculated on the basis of the prevalence of each SNP in cases and
controls. In this example, SNPs 1 and 2 on chromosome 9 are associated
with disease, with P values of 10712 and 1078, respectively

(Manolio 2010)
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Genome-wide association studies: basic principles

Position on chromosome 9

Chromosome 16 18 20 22

e The plot in Panel C shows the P values for all genotyped SNPs that have
survived a quality-control screen (each chromosome, a different color).

e The results implicate a locus on chromosome 9, marked by SNPs 1 and 2,
which are adjacent to each other (graph at right), and other neighboring
SNPs. (Manolio 2010)
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Genome-wide association studies: key components

* |ndividuals
Input Data * Genetic markers

* Adjust for confounders (e.g.,
genetic ancestry, smoking)

* Add levels of complexity (e.g.,

GxG, GxE interactions)

Association
Method

* Same conditions
* Dissimilar conditions

Validation
Replication

* Functional analysis

Interpretation .
P * Follow-up studies
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Genome-wide association studies: key components

e To carry out a GWAs, several tools are needed, which include those that
deal with data generation and data handling:

- Computerized data bases with reference human genome sequence

- Map of human genetic variation

- Technologies that can quickly and accurately analyze (whole genome)
samples for genetic variations that contribute to disease

(http://www.genome.gov/pfv.cfm?pagelD=20019523)
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Detailed flow of a genome-wide association study

Laboratory

Low level analysis

High level analysis

Biological question Sampling —p= Selection of DNA chip
DNA preparation —¥# Chip hybridization 9 Chip scan
Image analysis > Normalization —»  Genotype calling ]—»{Standard quality control

~

Statistical analysis D’[Replication [ Validation

.

- =T "~ "o
—% Impact on population ],

A

—% Replication ;‘ValidationH Impact on population ‘

- T a
Imputation H Statistical analysis
/

- == mm
" o o, * P -~y

L]
— = . N

Data mining Replication / Validation

/ép[ Impact on population l

. Y . =

'§. _/ " e oy opm s =
.

(Ziegler 2009)
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How to access GWAS results? View the GWAs catalogue
(http://www.genome.gov/gwastudies/

- 2317 studies (6/10/2014)

Page 10of 47 Next> Last>>

(Entries 1-50 of 2317)

Date First Disease/Trait Initial Replication Region Reported Gene(s) Mapped Strongest Context Risk Allele P-value OR or Platform CNV
Added to Author/Date/ Sample Sample Gene(s) SNP-Risk Frequency beta-coefficient |[SNPs passing QC]

Catalog Journal/Study Description Description Allele in and [95% CI]
(since Controls

11/25/08)

04/16/14 | Chung CM Resistin levels | 382 Han 559 Han 19p13.2 RETN RETN - r51423096-G 0.78 1x107 .322 [0.25-0.40] Tlumina N
March 03, 2014 Chinese Chinese C19orfs59 ug/mL increase INR]
Diabetes Metab ancestry ancestry
Res Rev indiviudals indiviudals
Common
gquantitative trait
locus downstream
of RETN gene
identified by
genome-wide
association study
is associated with
risk of tvpe 2
diabetes mellitus
in Han Chinese: a
Mendelian
randomization
effect.

rs7229639-A intron 0.145 3x107 1.22 [1.15-1.29] Affymetrix & N
Ilumina
[1,695,815]
(imputed)

10/03/14 Zhang B Colorectal 1,773 East 6,902 East 18q21.1 SMAD7 SMAD7
January 21, 2014 | cancer Asian ancestry | Asian ancestry
Int ] Cancer cases, 2,642 | cases, 7,862
Genome-wide East Asian East Asian
association study ancestry ancestry
identifies a new controls controls
SMAD7 risk

variant associated

with colorectal
cancer risk in East

Asians.

Tllumina N

10/06/14 Xie T Amyotrophic 250 Han NA View full set of 175 SNPs
[859,311] (pooled)

January 17, 2014 | lateral sclerosis | Chinese

Neurobiol Aging | (sporadic) ancestry. NA RABSP1 NA kgp22272527-? NR 8x 1071t NR
A genome-wide cases, 250 Han
association studv Chinese
combining ancestry
pathway analysis controls _ s
12924.33 GPR133 GPR133 rs11061269-2 |intron 0.08 8x10°10 3.7761 [2.49-5.74]
for typical SR—
sporadic 21q22.3

NA MYo188 NA kgp8087771-? 0.2 2x10°10 3.0327
[2.212039-4.157817]

TMPRSS2 IMPRSS2 - £59977018-2 0.05 2102 NR
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Home  About  Search Browser  API Downloads  Cytoscape @ RDF  disgenet2r Help

DisGeNET is a discovery platform containing one of the largest publicly available collections of genes and
variants associated to human diseases (Pifiero et al., 2019; Pifiero et al., 2016; Pifero et al., 2015). DisGeNET
integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature.
DisGeNET data are homogeneously annotated with controlled vocabularies and community-driven ontologies.
Additionally, several original metrics are provided to assist the prioritization of genotype—phenotype
relationships.

The current version of DisGeNET (v6.0) contains 628,685 gene-disease associations (GDAs), between 17,549
genes and 24,166 diseases, disorders, traits, and clinical or abnormal human phenotypes, and 210,498
variant-disease associations (VDAs), between 117,337 variants and 10,358 diseases, traits, and phenotypes.
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DisGeNet !

The information in DisGeNET can be accessed in several ways:

. The web interface, through the Search and Browse functionalities

. The Resource Description Framework (DisGeNET-RDF) representation via the
SPARQL endpoint, and the Faceted Browser

. The DisGeNET Cytoscape App

. Scripts in the most commonly used programming languages

. The disgenet2r package.

. The SQLite database

. Tab separated files.

DisGeNET is a versatile platform that can be used for different research purposes
including the investigation of the molecular underpinnings of human diseases and
their comorbidities, the analysis of the properties of disease genes, the generation of
hypothesis on drug therapeutic action and drug adverse effects, the validation of
computationally predicted disease genes and the evaluation of text-mining methods
performance.
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Genetics and population analysis

GenABEL: an R library for genome-wide association analysis

Yurii S. Aulchenko'*, Stephan Ripke?, Aaron Isaacs' and Cornelia M. van Duijn’

'Department of Epidemiology and Biostatistics, Erasmus MC Rotterdam, Postbus 2040, 3000 CA Rotterdam,
The Netherands and “Statistical Genetics Group, Max-Planck-Institute of Psychiatry, Kraepelinstr. 10, D-80804

Munich, Germany

Received on December 3, 2006; revised on February 14, 2007; accepted on March 13, 2007

Advance Access publication March 23, 2007
Associate Editor: Martin Bishop

ABSTRACT

Here we describe an R library for genome-wide association
(GWA) analysis. It implements effective storage and handling of
GWA data, fast procedures for genetic data quality control, testing of
association of single nucleotide polymorphisms with binary or
quantitative traits, visualization of results and also provides easy
interfaces to standard statistical and graphical procedures imple-
mented in base R and special R libraries for genetic analysis. We
evaluated GenABEL using one simulated and two real data sets. We
conclude that GenABEL enables the analysis of GWA data on
desktop computers.

Availability: http://cran.r-project.org

Contact: i.aoultchenko@erasmusmc.nl

With these objectives in mind, we developed the GenABEL
software, implemented as an R library. R is a free, open
source language and environment for statistical analysis
(http://www.r-project.org/). Building upon existing statistical
analysis facilities allowed for rapid development of the package.

2 IMPLEMENTATION

2.1 Objective (1)

GWA data storage using standard R data types is ineffective.
A SNP genotype for a single person may take four values
(AA, AB, BB and missing). Two bits, therefore, are required to
store these data. However, the standard R data types occupy
32 bits, leading to an overhead of 1500%, compared to the
theoretical optimum. Use of the raw R data format. occupving
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Vol. 26 ISMB 2010, pages i208-i216
doi:10.1093/bioinformatics/btq191

Multi-population GWA mapping via multi-task regularized

regression

Kriti Puniyani, Seyoung Kim and Eric P. Xing*

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

Motivation: Population heterogeneity through admixing of different
founder populations can produce spurious associations in genome-
wide association studies that are linked to the population structure
rather than the phenotype. Since samples from the same population
generally co-evolve, different populations may or may not share the
same genetic underpinnings for the seemingly common phenotype.
Our goal is to develop a unified framework for detecting causal
genetic markers through a joint association analysis of multiple
populations.

Results: Based on a multi-task regression principle, we present a
multi-population group lasso algorithm using L;/L,-regularized
regression for joint association analysis of multiple populations
that are stratified either via population survey or computational
estimation. Our algorithm combines information from genetic
markers across populations, to identify causal markers. It also
implicitly accounts for correlations between the genetic markers, thus
enabling better control over false positive rates. Joint analysis across
populations enables the detection of weak associations common to
all populations with greater power than in a separate analysis of each
population. At the same time, the regression-based framework allows
causal alleles that are unique to a subset of the populations to be
correctly identified. We demonstrate the effectiveness of our method
on HapMap-simulated and lactase persistence datasets, where we
significantly outperform state of the art methods, with greater power
for detecting weak associations and reduced spurious associations.
Availability: Software will be available at http://www.sailing.cs.cmu
.eduw/

the geographical distribution of the individuals. For example, it has
been shown that such heterogeneity is present in the HapMap data
(The International HapMap Consortium, 2005) across European,
Asian and African populations; and heterogeneity at a finer scale
within European ancestry has been found in many genomic regions
in the UK samples of Wellcome trust case control consortium
(WTCCC) dataset (Wellcome Trust Case Control Consortium,
2007). Although the standard assumption in existing approaches
for association mapping is that the effects of causal mutations are
likely to be common across multiple populations, the individuals
in the same population or geographical region tend to co-evolve,
and are likely to possess a population-specific causal allele for the
same phenotype. For example, Tishkoff ef al. (2006) reported that
the lactase-persistence phenotype is caused by different mutations
in Africans and Europeans. In addition, the same genetic variation
has been observed to be correlated with gene-expression levels with
different association strengths across different HapMap populations.
Our goal is to be able to leverage information across multiple
populations, to find causal markers in a multi-population association
study.

1.1 Highlights of this article

We propose a novel multi-task-regression-based technique that
performs a joint GWA mapping on individuals from multiple
populations, rather than separate analysis of each population, to
detect associated genome variations. The joint inference is achieved
by using a multi-population group lasso (MPGL). with an L /L

015903 £q /B10'sBwInOfproyo'sonBULIONUIONY//:dRY WY ppRojIAmOQ
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Genetics and population analysis

GWAsimulator: a rapid whole-genome simulation program

Chun Li"* and Mingyao Li?

'Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232 and “Department of
Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

Received on July 20, 2007; revised on October 10, 2007; accepted on October 29, 2007

Advance Access publication November 15, 2007
Associate Editor: Martin Bishop

ABSTRACT

Summary: GWAsimulator implements a rapid moving-window
algorithm to simulate genotype data for case-control or population
samples from genomic SNP chips. For case-control data, the
program generates cases and controls according to a user-specified
multi-locus disease model, and can simulate specific regions if
desired. The program uses phased genotype data as input and has
the flexibility of simulating genotypes for different populations and
different genomic SNP chips. When the HapMap phased data are
used, the simulated data have similar local LD patterns as the
HapMap data. As genome-wide association (GWA) studies become
increasingly popular and new GWA data analysis methods are being
developed, we anticipate that GWAsimulator will be an important
tool for evaluating performance of new GWA analysis methods.
Availability: The C++ source code, executables for Linux, Windows
and MacOS, manual, example data sets and analysis program are
available at http://biostat.mc.vanderbilt.edu/GWAsimulator
Contact: chun.li@vanderbilt.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

2 METHODS

The program can generate unrelated case-control (sampled retro-
spectively conditional on affection status) or population (sampled
randomly) data of genome-wide SNP genotypes with pattemns of LD
similar to the input data.

2.1 Phased input data and control file

The program requires phased data as input. If the HapMap data are
used, the number of phased autosomes and X chromosomes are 120
and 90 for both CEU and YRI, 90 and 68 for CHB, and 90 and 67 for
JPT. Additional parameters needed by the program should be provided
in a control file, including disease model (see Section 2.2), window size
(see Section 2.3), whether to output the simulated data (see Section 2.4),
and the number of subjects to be simulated.

2.2 Determination of disease model

For simulations of case-control data, a disease model is needed.
The program allows the user to specify disease model parameters,
including disease prevalence, the number of disease loci, and for each
disease locus, its location, nisk dllele and genolyplc relative risk. If the

e st b ctemsdata cmanlifia caimans tha daet wemd aemd i aslibiaems waad
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Genome analysis

AssociationViewer: a scalable and integrated software tool for
visualization of large-scale variation data in genomic context
Olivier Martin®-T, Armand Valsesia’-2-t, Amalio Telenti®, loannis Xenarios’

and Brian J. Stevenson':2:*

1Swiss Institute of Bioinformatics, 2Ludwig Institute for Cancer Research, 1015 Lausanne and 3Institute of
Microbiology, University Hospital, University of Lausanne, 1011 Lausanne, Switzerland

Received on September 16, 2008; revised on December 16, 2008; accepted on January 5, 2009

Advance Access publication January 25, 2009
Associate Editor: John Quackenbush

ABSTRACT

Summary: We present a tool designed for visualization of large-scale
genetic and genomic data exemplified by results from genome-wide
association studies. This software provides an integrated framework
to facilitate the interpretation of SNP association studies in genomic
context. Gene annotations can be retrieved from Ensembl, linkage
disequilibrium data downloaded from HapMap and custom data
imported in BED or WIG format. AssociationViewer integrates
functionalities that enable the aggregation or intersection of data
tracks. Itimplements an efficient cache system and allows the display
of several, very large-scale genomic datasets.

Availability: The Java code for AssociationViewer is distributed
under the GNU General Public Licence and has been tested on
Microsoft Windows XP, MacOSX and GNU/Linux operating systems.
It is available from the SourceForge repository. This also includes
Java webstart, documentation and example datafiles.

Contact: brian.stevenson@licr.org

Supplementary information: Supplementary data are available at
http://sourceforge.net/projects/associationview/ online.

represented in BED or WIG format and implements aggregation
(union) or intersection of data tracks.

2 PROGRAM OVERVIEW

2.1 Cache and memory management

With increasing data volumes, efficient resource management is
essential. One approach is to store the data in a cache with fast
indexing mechanisms to retrieve the data, and to keep in memory
only the information that is visualized. We implemented such a
system in AssociationViewer. For comparison, loading a single
dataset with 500 K SNPs in WGAViewer needs about 224 MB of
RAM., whereas loading 10 different datasets (a total of 10M data
points) and displaying all genes on chromosome 1 needs only 50 MB
in AssociationViewer.

2.2 Data import and export

A typical GWA dataset consists of a list of SNPs with P-values
derived from an association analysis. In AssociationViewer, such
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Bioconductor

Bioconductor: open software development for computational

biology and bioinformatics
Robert C Gentleman?, Vincent J Carey2, Douglas M Bates3, Ben Bolstad4,

Marcel Dettling5, Sandrine Dudoit4, Byron Ellis®, Laurent Gautier?,
Yongchao Ge8, Jetf Gentry?, Kurt Hornik9, Torsten Hothorn?o,
Wolfgang Huber!!, Stefano Iacus?!2, Rafael Irizarry?s, Friedrich Leisch?,
Cheng Lit, Martin Maechlers, Anthony J Rossini4, Gunther Sawitzki?s,
Colin Smith?®, Gordon Smyth'7, Luke Tierney?8, Jean YH Yang9 and
Jianhua Zhang!

Published: |5 September 2004 Received: 19 April 2004

. . Revised: | July 2004
Genome Biology 2004, 5:R80 Accepted: 3 August 2004

The electronic version of this article is the complete one and can be
found online at http://genomebiclogy.com/2004/5/ | 0/R80

© 2004 Gentleman et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

About
Bioconductor

Bioconductor provides tools for the
analysis and comprehension of
high-throughput genomic data.
Bioconductor uses the R statistical
programming language, and is open
source and open development. It
has two releases each year, 1024

software packages, and an active

user community. Bioconductor is
also available as an AMI (Amazon
Machine Image) and a series of
Docker images.

News

= Bioconductor F1000 Research Channel
launched.
* Bioconductor 3.1 is available.

* Orchestrating high-throughput genomic
analysis with Bioconductor (abstract) and

nthar rocant litArastoren

(http://www.bioconductor.org/)

Install

Install »

Get started with Bioconductor

= Install Bioconductor

= Explore packages

= Get support
= Latest newsletter

= Follow us on twitter
= Install R

Use »

Create bioinformatic solutions with
Bioconductor

= Software, Annotation, and Experiment
packages

= Amazon Machine Image

= | atest release annoucement

search: |

Developers

Learn »

Master Bioconductor tools

Courses

Support site

Package vignettes
Literature citations

Common work flows
FAQ

Community resources
Videos

Develop »

Contribute to Bioconductor

Use Bioc ‘devel’

‘Devel’” Software, Annotation and
Experiment packages

Package guidelines

New package submission

About
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3 Study Design
Components of a study design for GWA studies

e The design of a genetic association study may refer to
- study scale:
* Genetic (e.g., hypothesis-drive, panel of candidate genes)
" Genomic (e.g., hypothesis-free, genome-wide)
- marker design:
= Which markers are most informative in GWAs? Common variants-
SNPs and/or Rare Variants (MAF<1%)
= Which platform is the most promising? Least error-prone? Marker-
distribution over the genome?
- subject design

Van Steen K
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3.a Marker Level

e Costs may play arole, but a
balance is needed between costs
and chip/sequencing platform
performance

e Coverage also plays a role (e.g.,

exomes only or a uniform spread).

e When choosing Next Generation
Sequencing platforms, also rare
variants can be included in the
analysis, in contrast to the older
SNP-arrays (see right panel).

Patient DNA

Amplification
Digestion
Probe Iabeliny
SNP array

o B o oo NN
S q“e“e o Allele A
S’{. + i §§§$e?§ 3 Allele B

l Hybridization

@ Normal

Allele A

@ Deletion

@ Duplication

Allele B
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From common variants towards including rare variants

e Hypothesis 1 for GWAs: Common Disease — Common Variant (CDCV):

- This hypothesis argues that genetic variations with appreciable
frequency in the population at large, but relatively low penetrance (i.e.
the probability that a carrier of the relevant variants will express the
disease), are the major contributors to genetic susceptibility to common
diseases (Lander, 1996; Chakravarti, 1999; Weiss & Clark, 2002; Becker,
2004).

- The hypothesis speculates that the gene variation underlying
susceptibility to common heritable diseases existed within the founding
population of contemporary humans — explains the success of GWAs?

Van Steen K
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From common variants towards including rare variants

e Hypothesis 2 for GWAs: Common Disease — Rare Variant (CDRV):

- This hypothesis argues that rare DNA sequence variations, each with
relatively high (moderate to high) penetrance, are the major contributors
to genetic susceptibility to common diseases.

- Some argumentations behind this hypothesis include that by reaching an
appreciable frequency for common variations, these variations are not as
likely to have been subjected to negative selection. Rare variations, on
the other hand, may be rare because they are being selected against due
to their deleterious nature.

There is room for both hypothesis in current research !
(Schork et al. 2009)
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Identified # of traits for which a molecular basis exists: importance of SNPs

%91 (Glazier et al 2002 e . L.
o0} ( ) { Complex disease (definition):
ﬁg 1400 1+ H - .
§§ % The term complex trait/disease
§§ e | %51 refers to any phenotype that
ZE 1 5
32 7 ¥ does NOT exhibit classic Mendelian
§_§ 400 + -
| inheritance attributable to a single
(:980 1985 1990 19'95 20l00 gene;

Year

PINK : Human Mendelian traits although they may exhibit familial

_ , , tendencies (familial clustering,
BLUE middle line : All complex traits

concordance among relatives).
BLUE bottom line + red extension:

Human complex traits
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Distribution of SNP “effects”

Dichotomous Traits

(@ 200 -

190 4

1804 @

1.70 <
1.60 4
1.50 4
1.40 e * & o X
1.30 4

Odds ratio

o g

10’ Qo O
1.00 4

=S o
e O @
1.20 4 A 8:9 2 7
1 % 08 ® e ¢ T o

000 005 010 0.15 020 0.25 030 0.35 040 045 050

Minor allele frequency

B —
o
—

Effect size (S.D.)

050 4

045
040 -
035 -
0.30 +
025 ~

020

015 4
0.10 1
0.05 4

0.00

Quantitative Traits

o
\O oe o *
» %02 <>8
o
& g@&o& ogzb‘o

0.00 005 010 015 020 025 030 035 040 045 050

Minor allele frequency

Arking & Chakravarti 2009 Trends Genet

Food for thought:

e The higher the MAF, the lower the effect size

e Rare variants analysis is in its infancy in 2009 ....
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3.b Subject Level

Aim Selection scheme

Increased effect size Extreme sampling: Severely affected cases vs. extremely

normal controls

Genes causing early Affected, early onset vs. normal, elderly

onset

Genes with large / Cases with positive family history vs. controls with
moderate effect size negative family history

Specific GXE interaction Affected vs. normal subjects with heavy environmental

exposure

Longevity genes Elderly survivors serve as cases vs. young serve as controls

Control for covariates Affected with favorable covariates vs. normal with
with strong effect unfavorable covariate

Morton & Collins 1998 Proc Natl Acad Sci USA 95:11389
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Popular design 1: cases and controls

Avoiding bias — checking assumptions:

1. Cases and controls drawn from same population
2. Cases representative for all cases in the population
3. All data collected similarly in cases and controls

Advantages: Disadvantages:
1. Simple 1. Population stratification
2. Cheap 2. Prone to batch effects and other biases
3. Large number of cases and controls 3. Case definition / severity
available 4. Overestimation of risk for common

4. Optimal for studying rare diseases diseases

Van Steen K



Bioinformatics applications

Popular design 2: family-based

Avoiding bias — checking assumptions:

1. Families representative for population of interest
2. Same genetic background in both parents

Advantages:

4. Simple logistics for diseases in children

1. Controls immune to population 5. Allows investigating imprinting (“bad

stratification (no association without allele” from father or mother?)

linkage, no “spurious” (false positive) _
Disadvantages

association)

2. Checks for Mendelian inheritance 1. Cost inefficient
possible (fewer genotyping errors) 2. Sensitive to genotyping errors
3. Parental phenotyping not required (late “Lower power when compared wit

onset diseases) case-control studies
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Some more power considerations

e Rare versus common diseases (Lange and Laird 2006)

a Rare disease (prevalence 0.1%) b Common disease (prevalence 14%)
0.8 — 0.7 —
— i P L s T Y
0.7 nﬂﬂ“““m“““'ﬂnnu 0.6 — #”HME:': . L
nu’"“ g.'.# u'n“u BEOBO N nnnny
0.6 a"
0.5 —
5 0.5 =
g g 04
=1 o
a 04— 3
T =
E E 03
N i
0.2
01—
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4 Pre-analysis steps

4.a Quality control

Standard file format for GWA studies
Standard data format: tped = transposed ped format file

FamIiD PID FID MID SEX AFF SNP1; SNP1, SNP2, SNP2,

ped file

1 1 0 O 1 1 A A G T
2 1 0 O 1 1 A C T G
3 1 0 O 1 1 C C G G
4 1 0 O 1 2 A C T T
5 1 0 O 1 2 C C G T
6 1 0 O 1 2 C C T T

SNP name Genetic distance Chromosomal position

SNP1

0

123456

SNP2

0

123654

map file

Van Steen K
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Standard file format for GWA studies (continued)

Chr SNP

Gen. dist. Pos

PID1 PID2 PID3 PID4 PID5 PID6

1 SNP1 O

123456 A A A C C C A C C C C C

1 SNP2 O

123654 G T G T G G T T G T T T

tfam file: First 6 columns of standard ped file

FamIiD PID FID MID SEX AFF

1

0

0

1

1

tped file

tfam file

Gl W N
N S = B

o|jlo OO O

ol OO )| O

1
1
1
1
1

NN NP -
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Note: data flow prior to analysis depends on calling algorithm

. referonce .
CEI Celquantilamorm | —» —p | CelQuantileiorm

Affymetris )

CDFIS‘ chr splits annntatq
Affymetrix » \\* l /
annotaben

- |&PL

/LN

GEN GEMN GEN

affyzchiamoasnnotation.pl

Jap 2tped

!

Genotype calling algorithm: JAPL

(Ziegler and Van Steen 2010)

Van Steen K



Bioinformatics applications

Note: data flow prior to analysis depends on calling algorithm

\

CEL

crimmi()

/

D

conf

calls

Genotype calling algorithm: CRLMM

T

annot

!

crimm2tped.pl

-

—>» | tped

(Ziegler and Van Steen 2010)
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Why is quality control (QC) important?

BEFORE QC - true signals are lost in false positive signals

10 e R
“_;. " e W
o G wedpe e T R
Gor R R S A
" - o - - . - 5 ;
8 »'I._": ﬂ{:_‘_,‘ .‘: ,"-,: PR
8 pm ~-'_!.'c,.. . g -
PLE AR "
W R SR T LR
SR R L L D
£ A S A T A
a ";:'.'.'-.ﬁ 1-"":5"' N ;.1\..' ) i*:
5 e %*} P gh a8
- : Bl AT g
4 - St ’ 3
- £,
2 —
0 i
1 2 3 4 5 3] 7 B g 10 11 12 13 14 15 16 17 19 2

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840

(Ziegler and Van Steen 2010)
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Why is quality control important?

AFTER QC - skyline of Manhattan (= name of plot: Manhattan plot):

-log(P]

1 2 3 4 5 6 7 10 11 12 13 14 18 16 17 19 21

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840
SNPs passing standard quality control: 270,701

(Ziegler and Van Steen 2010)
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What is the standard quality control?

e Quality control can be performed on different levels:

— Subject or sample level
— Marker level (in this course: SNP level)
— X-chromosomal SNP level (in this course not considered)

e Consensus on how to best QC data has led to the so-called “Travemiinde
criteria” (obtained in the town Travemiinde) — see later

Van Steen K
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Marker level QC thresholds may be genotype calling algorithm dependent

BTl K M BN BTSN, SRR Allele signal intensity genotype
® Grdseed =B 8 * Brdseed = NoCall & fydiced=B B * Birdseed = NoCal
: . — calling cluster plots for two
% o] AT z .18 different SNPs from the same study
E ] é i population.
o 50 a 0 ]: E . om
2w e _ z 400 Upper panels: Birdseed genotypes
{ ol . .S Lower panels: BEAGLECALL

200 30 400 S0
Allele A intensity

® BoageCalmAA  » BeogeCall = A B
® BeageCall =BB X BoagheCal = NoCal

200 400 600 €00 1,000 1,200 1,400

Allele A Intensity

» BeageCall=A A = BeageCal=AB
® BesgeCal =B B x BeagheCal = NoCal

genotypes.

] , The plots on the left show a SNP
g P s & with poor resolution of A_B and
: é i § B_B genotype clusters and the
0 o 50 . )
< 2 increased clarity of genotype calls
TR e that comes from using BEAGLECALL

200 300 400 S00 600
Allele A intensity

(Golden Helix Blog)

200 400 600 €00 1,000 1,200 1,400
Allele A Intensity
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Quality control at the marker level

e Minor allele frequency (MAF):
— Genotype calling algorithms perform poorly for SNPs with low MAF
— Power is low for detecting associations to genetic markers with low
MAF (with standard large-sample statistics)
e Missing frequency (MiF)
— 1 minus call rate
— MiF needs to be investigated separately in cases and controls because
differential missingness may bias association results
e Hardy-Weinberg equilibrium (HWE)
— SNPs excluded if substantially more or fewer subjects heterozygous at a
SNP than expected (excess heterozygosity or heterozygote deficiency)

Van Steen K
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What is Hardy-Weinberg Equilibrium (HWE)?

Consider diallelic SNP with alleles A and a

Van Steen K
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What is Hardy-Weinberg Equilibrium (HWE)?
Consider diallelic SNP with alleles A; and A,

¢ Genotype frequencies
P(A1A) = pi1, P(A1A2) = pi2, P(A2A) = po
o Allele frequencies P(A;) = p = pii + 3p12, P(A) =q =pn+2p

%Pl;z
If
o P(A1A)) = pi = p°
e P(A1As) = p1o = 2pq
o P(A2Ar) = po = ¢°

the population is said to be in HWE at the SNP

(Ziegler and Van Steen 2010)
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Distorting factors to HWE causing evolution to occur

1.Non-random mating

2.Mutation - by definition mutations change allele frequencies causing
evolution

3.Migration - if new alleles are brought in by immigrants or old alleles are
taken out by emigrants then the frequencies of alleles will change causing
evolution

4.Genetic drift - random events due to small population size (bottleneck
caused by storm and leading to reduced variation, migration events leading
to founder effects)

5.Natural selection — some genotypes give higher reproductive success
(Darwin)

Van Steen K
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The Travemiinde criteria

Filter criterion

Standard value for filter

Sample level Call fraction > 97%
Cryptic relatedness Study specific
Ethnic origin Study specific; visual inspection of
principal components
Heterozygosity Mean £ 3 std.dev. over all samples
Heterozygosity by gender Mean £ 3 std.dev. within gender group
SNP level MAF >1%
MiF < 2% in any study group, e.g., in both

MiF by gender
HWE

cases and controls
< 2% in any gender
p < 10

(Ziegler 2009)
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The Travemiinde criteria

Filter criterion Standard value for filter
SNP level Difference between control groups p > 10" in trend test

Gender differences among controls p>10"in trend test
X-Chr SNPs Missingness by gender No standards available

Proportion of male heterozygote calls No standards available

Absolute difference in call fractions for No standards available
males and females

Gender-specific heterozygosity No standard value available

(Ziegler 2009)
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4.b Linkage disequilibrium

e Linkage Disequilibrium (LD) is a measure of co-segregation of alleles in a
population — linkage + allelic association

Two alleles at different loci that occur together on the same chromosome
(or gamete) more often than would be predicted by random chance.

® |t is a very important concept for GWAs, since it gives the rational for
performing genetic association studies

Indipect 0 oo > [Disease ]
association _e="" e phenotype
T
-
’ Direct Direct
| association association

- : —Haplotype

Typed marker locus Unobserved causal locus
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4.c Confounding by shared genetic ancestry — “population

L] o [ ] ”
Stratlflcatlon Two necessary — albeit not sufficient —

conditions for an extraneous factor ("confounder™)
to produce such a bias are (Figure 1a):

1. the confounder i1z a risk factor for the
outcome;

If successful, the random allocation of subjects to the confounder is associated with the

[

glei expgsu;f “élmh Cha?‘:;;ﬂse RCT; Efsures 4 exposure, 1e. its distribution 15 different
alanced distribution o own and unknown among mndividuals with different exposure
confounding factors between exposed and non- status

exposed subjects. This 1s equivalent of removing
the association between the exposure and all
potential confounders (Figure 1b). and therefore,
the possibility of confounding itself In this case, C
the effect of the exposure on the outcome can be (a) '
directly estimated by simply comparing outcomes
between exposed and unexposed subjects (1).

Regression uses mathematical modelling to
estimate the effect of confounders on the outcome. (b) C (C) C
and to "remove"” this effect statistically. This 1s - | .\
equivalent of removing (or, more realistically, Y B
reducing) the association between confounder and TN R
outcome. thus elimunating the second necessary L by

condition for confounding (Figure 1c). E > () E > 0

(Cois 2014)

Figure 1: Schematic illustration of confounding control. Arrows represent causal effects, double arrows associations of any natuie.
E = exposure, C = confounder, O = outcome.
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Confounding by shared genetic ancestry: heterogeneity in populations

e There can be population structure in all populations, even those that

appear to be relatively “homogeneous”

a b Subjects with both parents
’>7 a0 from the same group
n(j\ ./’/ {
| 9
\‘\. . A‘Central Lapland

20 A
East Lapland £
=
()]

= 101
=
©
Kainuu 5]
g

o 01
c
g
Q
Q
n

-10
B West Lapland @ South Oulu
0O Central Lapland ® North Oulu
—20 4 @ East Lapland m Kainuu
-40 -20 0 20

First coordinate MDS

(Sabatti et al. 2009)
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Confounding by shared genetic ancestry : creating a PC space

e In European data, the first 2 principal components “nicely” reflect the N-S
and E-W axes |

0.14 I I I T I I
French +
Spanish
012 - German ¥ + -
UK O
Czech
01 Slvek o 7
Hungarian
0.08 - Polish & n -
Romanian % + 4
Norway = .
0.06 - Russian - o D
004 —
0.02 - B
0 voi .
o
0.02 g
0.04 =
-0.06
-0.03 -0.02 -0.01 0 0.01 0.02 003 0.04

Y-axis: PC2 (6% of variance); X-axis: PC1 (26% of variance)
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Confounding by shared genetic ancestry : creating a PC space

e In European data, the first 2 principal components “nicely” reflect the N-S
and E-W axes |

Y-axis: PC2 (6% of variance); X-axis: PC1 (26% of variance)

Van Steen K
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The versatile use of PCs in genetic epidemiology

Statistical Applications in Genetics
and Molecular Biology

Volime 3, Forue | 200 Aricle 17
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Adjusting for Unknown Environmental and/or
Polvgenic Effects
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Not everything in life is linear!

Brigfings in Bioinformatics, 0O(00), 2018, 1-17

doi: 10,1093/ bib/biyas
Advanca Access Publication Date: 14 Septamber 2018
Raviaw Articks

Principals about principal components in
statistical genetics

Fentaw Abegaz, Knidsadakom Chaichoompu, Emmanuelle Génin,
David W. Fardo, Inke R. Konig, Jestinah M. Mahachie John and
Kristel Van Steen

Commesponding suthar: Fantaw Abogar, CIGA-R, Medical Canconics-E104, Univarsity of Licge, Lisge, Balgium. Tel: 432 43563965;
E-mail- y fabagar@ilg acba

Abstract

Principal components (PCE) are widely used in statistics and refer to & relatvely small number of uncomrelated variables
derived from an initial pool of wariables, while explaining 25 much of the total varance 25 possible. Also in statistical
penetics, principal component snzalysis (PCA) is 2 popular technique. To achieve optimal results, a thorowgh understanding
ghout the different implementations of PCA is required and their impact on study results, compared to alternative
gpproaches. In this review, we foous on the poesibilities, limitztions and role of PCs in ancestry prediction, genome-wide
sssociation smdies, rare variants analyses, imputstion strategies, mets-analysis and epistasis detection. We also describe
several wvariations of dassic PCA that deserve increased attention in statisdczl genetics applications.

Key words: principal component anzalysis; population stratification; statistical genetics; exploration and prediction
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5 Analysis Steps

5.a Testing for Genetic Associations (focus on SNPs)

P
Marker = Association = .
i . : Disease
Disease locus Causal relationship
....................................... -

Marker Association Disease

Causal
relationship

Linkage
disequilibrium

Disease locus

(Ziegler and Van Steen 2010)
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The linear regression model

= G0+ Bix1 + ...+ Brxk + €

@ y: response variable.

@ Xi,...,Xk. regressor variables, independent variables.

@ 0o.1,..., Bk regression coefficients.
@ ¢: model error.

» Uncorrelated: cov(e;,ej) = 0,7 # J.
» Mean zero, Same variance: var(¢;) = o®. (homoscedasticity)
» Normally distributed.
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Linear vs non-linear

Linear Models Examples:

y = B0+ Bix + Box? + €
y = ,.30 + .,31)(1 4+ JBQXQ —+ |,312X1 Xo + €
y = o+ Pilogxy + Bologxo + €

. , 1 , 1
|Og_}/ = I,fj)[;. + :31 () —+ Iﬁg () + €
X1 X2

Nonlinear Models Examples:

y = Bo+ Bix{t + Baxy? + €
IS
1 + e;’3’1X1 + €

y:
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Regression inference

— Bo + OB1x1 + ...+ Bixk + €

@ Least square estimation of the regression coefficients.
b= (XTX)"1XTy.

e Variance estimation for o2 (see later)

o Coefficient of Determination. RZ.
o Partial F test or t-test for Hy : 3; = 0.
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What is R-squared?

e R-squared is a statistical measure of how close the data are to the fitted
regression line. It is also known as the coefficient of determination, or the
coefficient of multiple determination for multiple regression.

e The definition of R-squared is fairly straight-forward; it is the percentage of
the response variable variation that is explained by a linear model:

R-squared = Explained variation / Total variation
(compare with well-known formula for cor(X,Y))

e R-squared is always between 0 and 100%:
- 0% indicates that the model explains none of the variability of the
response data around its mean; 100% indicates that the model explains
all the variability of the response data around its mean.
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Graphical representation of R-squared

e Plotting fitted values by observed values graphically illustrates different R-
squared values for regression models.

Plots of Observed Responses Versus Fitted Responses for Two Regression Models

Fitted
responses

Observed responses Observed responses

e The regression model on the left accounts for 38.0% of the variance while
the one on the right accounts for 87.4%. The more variance that is
accounted for by the regression model the closer the data points will fall to
the fitted regression line.
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General linear test approach

e The full model (continuous response, say “BMI”):
Y= o+ B1X1+ BrX, + ¢

e Fit the model by f.i. the method of least squares (this leads to estimations b
for the beta parameters in the model)

e It will also lead to the error sums of squares (SSE): the sum of the squared
deviations of each observation Y around its estimated expected value

e The error sums of squares of the 10Hs eData _
full model SSE(F): | '

z[Y — by — b1 Xy — bzXz]2 6:

=Z(Y—?)2 T
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General linear test approach

e Next we consider a null hypothesis Hp of interest:
Hy: 51 =0
Hl: 181 * O
e The model when HO holds is called the reduced or restricted model. When
1 = 0, then the regression model reduces to
Y —_ ﬁo + ﬁz X2 + £
e Again we can fit this model with f.i. the least squares method and obtain an
error sums of squares, now for the reduced model: SSE(R)

Which error sums of squares will be smaller? SSE(F) or SSE(R)
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General linear test approach

e The logic now is to compare both SSEs. The actual test statistic is a
function of SSE(R)-SSE(F):

e _ SSE(R) — SSE(F)  SSE(F)
- dfg — dfe  dfy

which follows an F distribution when Hg holds

e The decision rule (for a given alpha level of significance) is:
If F* < F(1—a; dfg — dfs, dfr), you cannot reject Hg
If F* > F(1 —a; dfg — dfg, dfg), conclude H;
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Recall: rejection and non-rejection regions

Density of F-statistic under Ho

E,'T}-'DiI:EII" F=

sample means about as far
apar as you'd expectif
population means egual

W rejection region
(upper tail anly)

Large F =
Sample means far

small F =
from equal

sample means
are very close

/

Tzmall T medium .
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What are different shapes of an F distribution (parameters m, n)?

= .
— m=2,n=2
m=2,n=5
e — m=2,n=10
=} — m=5n=2
m=5n=>5
m=>5,n=10
o A — m=10,n=2
- ;\ — m=10,n=5
= \ m=10,n =10
aEr m=20,n=20
=
[
[l
= M\\
=
=
I I I I |
0 1 2 3 4
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Why F test?

i i
Hy:01 <03

L)

Hy nl“’ >

o

a

(a) (b)

0 F : 0 Fia

F
Reject H, Reject /ﬁ

Hy: ﬂ’lz -'-'0’3’

(©) 3
0 Fran Far E
Reject //q Reject H,
Terminology | Alternative Hypothesis Rejection Region
Right-tailed H, : crf > crg F > F,
Left-tailed H, : crf < cr% F<F .,
Two-tailed H, : 0% # o2 F<F qporF >F,,
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Special cases of an F distribution

normal distribution = F(1.,infinite)

t distribution = F(1, ny)
chi-square _ o
distribution F(n1, Infinite)
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Tests in GWAS using the regression framework

e Example 1:
Y = ﬁo"‘ ,315NP+ &E

- HO: ﬁl = O
- Hl: ,81 ¥ O -
_ dfF —n—2 (thiS links to dfin The variance of a discrete random variable is:
variance estimation) . s \ |
I : Oy = \ﬁ(.\‘—,ux, )" PLX)
— dfg = n — 1 (this links to df in ol X
variance estimation) _

It can be shown that for testing f; = O versus f; # 0
__ SSE(R)-SSE(F) . SSE(F) _ b _ (t)?

_F*
dfr—dfF afr s%(b1)
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Tests in GWAS using the regression framework

e Example 2:
Y= py+ BiSNP + [,PC; + (3PC, + ¢
-Hy: 5, =0
-Hi:p; #0
-dff =n—4
- dfg =n-—3

How many dfs would the corresponding F-test have?

How many dfs would a corresponding t(?) test have?
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The impact of different encoding schemes for SNPs

Coding scheme for statistical modeling/testing

Indiv. X1 X1 X2 X1 X1 X1
genotype
Additive Genotype Dominant |Recessive |Advantage
coding coding coding (for | coding (for | Heterozygous
(general mode ||a) a)
of inheritance)
AA 0 0 0 10 0 0
Aa 1 1 0 1 0 1
aa 2 0 1 1 1 0
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Which encoding scheme provides a good fit to the data?

cholesterol

et

P e e e e o e e e e e e e e . —— —

Aa aa
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Which encoding scheme provides a good fit to the data?

1
° ' [
« | S = W _ i 1
.g : B : !
° - [
S B L-.--\: 8c-: :
] 1 '
R L B F F R HE EEXERESR N ¥ =| s e —_—_—._-_—_—_-..-._-_-_' ______ = =

0 0 1

§ 1 0

1 ] 1

AA Aa aa

Robust vs overkill ?
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Which encoding scheme provides a good fit to the data?

cholesterol

Aa aa

Most commonly used
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Regression analysis in R

Syntax Model Comments
Y~A Y =B, + B1A Straight-line with an implicit y-
intercept
Y~-1+A Y =[(A Straight-line with no y-intercept:

that 1s, a fit forced through (0.0)

Y ~ A +1(A"2)

Y= E’D_ ﬁlA N BZAE

Polynomial model: note that the
identity function I( ) allows terms
in the model to include normal
mathematical symbols.

Y~A+B Y =p(,+pA+ BB A first-order model in A and B
without interaction ferms.

Y ~AB Y=0(,+pAB A model containing only first-order
interactions between A and B.

Y ~ A*B Y =p,+ B;A+B,B+P;AB | A full first-order model with a term:

an equivalent codeis Y ~A+B +
A:B.

Y - (A + B + C'}’*‘Z &7 = EJD_ ﬁlA T B:B Ll ﬁEC B

A model including all first-order

effects and interactions up to the ™

order, where n 1s given by ( )"n.
An equivalent code in this case is
Y ~ A*B*C - A:B.C.
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Special cases of an F distribution

normal distribution = F(1.,infinite)

t distribution = F(1, ny)
chi-square _ o
distribution F(n1, Infinite)
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Model diagnostics

e There are 4 principal assumptions which justify the use of linear regression
models for purposes of prediction:
- linearity of the relationship between dependent and independent
variables

- independence of the errors (no serial correlation)

- homoscedasticity (constant variance) of the errors
= versus time (when time matters)
= versus the predictions (or versus any independent variable)

- normality of the error distribution. (http://www.duke.edu/~rnau/testing.htm)

e To check model assumptions: go to quick-R and regression diagnostics
(http://www.statmethods.net/stats/rdiagnostics.html)
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QQ plots for model diagnostics — Q for Quantile

e Quantiles are points in your data below which a certain proportion of your
data fall.
What is the 0.5 quantile for normally distributed data?
e Here we generate a random sample of size 200 from a normal distribution
and find the quantiles for 0.01 to 0.99 using the quantile function:

quantile(rnorm(200),probs = seq(0.01,0.99,0.01))

e Q-Q plots take your sample data, sort it in ascending order, and then plot
them versus quantiles calculated from a theoretical distribution.
The number of quantiles is selected to match the size of your sample data.
The quantile function in R offers 9 different quantile algorithms!
See help(quantile)
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QQ plots for model diagnostics — Q for Quantile

e A Q-Q plot is a scatterplot created by plotting two sets of quantiles against
one another.

e If both sets of quantiles come from the same distribution, we should see
the points forming a line that’s roughly straight.

e Here’s an example of a Normal Q- Normal G- Plot

Q plot when both sets of quantiles

truly come from Normal

distributions.
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Examples of QQ plots: no straight line

e QQ plot of a distribution that’s skewed right; a Chi-square distribution with

3 degrees of freedom against a Normal distribution
ggplot(gnorm(ppoints(30)), gchisq(ppoints(30),df=3))

gnorm(ppoints(30))
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Examples of QQ plots: some frequent scenarios

b. Skewed to the c. Skewed to the
gorial Left Right

d. Thick Tails e.Thin Tails
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What if my Y is binary? Testing for association between case/control status

and a SNP

e Fill in the table below and perform a chi-squared test for independence

between rows and columns > genotype test 2 2 df

AA

Aa

dd

Cases

Controls

Sum of entries =
cases+controls

e Fill in the table below and perform a chi-squared test for independence
between rows and columns > allelic test (ONLY valid under HWE) = 1df

A

d

Cases

Controls

Sum of entries is
2 X (cases + controls )
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Toy example of chi-square test of independence

| [Blue  [Green Pk |
Boys 100(72) 150(108)  20(120) -

Girls 20(48) 30(72) 180(80)

00
20T S0 B0 n-s00
- Z(fo _fe)z
fe

0-72)> (20—-48)% (150-108)%> (30-72)%> (20-120)> (180 —80)
, _(100-72)* (20-48)? ( )2, (30-72)  (20-120)* ( )

X 72 48 108 72 120 80

What is the df ?
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The flexible regression framework
Instead of
Y= By+ BSNP + &;Y continuous
and modelling
E|Y|SNP] = By + [{SNP (without error term!)
consider
Po + B1SNP = n representing the linear combination as it can never be
equal to a binary variable (0/1 response; control/case status)
and model
g(E[Y|SNP]) = Bo+ BSNP = 1
where g() is called a link function between response and linear predictor

and thus
E[Y|SNP] = g_inv(n)
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For a binary trait Y:
E[Y|SNP] = Prob(Y = 1|SNP)
exp(n) 1

T (1+exp()  (1+exp(—m)
where

= g_inv(n)

g_inv is the logistic function (sigmoid function)
(squashing the linear predictor to an acceptable range)

> 7 <- rnorm(10000)

> ginv.of.Z <- (1/(1+exp(-2)))

> plot(Z,ginv.of.Z)

\\\\\\\
..........
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Since

(n)
Prob(Y = 1|SNP) = (122:(11))

we have

Prob(Y = 1|SNP)
1 — Prob(Y = 1|SNP)

= exp (1)

and thus

Prob(Y = 1|SNP) _
1= Prob(Y = 1jsNpP)) 7

g(E[Y|SNP]) = By + B1SNP =log(

g is called the logit function
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Which encoding scheme? Same as before; independent from trait type but
dependent on the nature of the marker

e Analyses based on phased haplotype data rather than unphased genotypes
may be quite powerful...

M1 1 1 2 2
DSL. D d d d
M2 1 2 1 2

Test 1 vs. 2 for M1: D+dvs.d
Test 1 vs. 2 for M2: D+dvs.d
Test haplotype H1 vs. all others: D vs. d

e If the Disease Susceptibility Locus (DSL) is located at a marker, haplotype
testing can be less powerful
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5.b Causation
“Association does not imply causation”

e Meaning:

In all observational epidemiologic studies, findings of an association
between a substance or exposure and a health effect do not necessarily
imply causation.

For example, a study might show that the habit of carrying matches is
associated with an increased likelihood of later developing lung cancer.
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"Correlation (as a measure of association) is not causation”

e Meaning:

Just because two things correlate does not necessarily mean that one
causes the other.

As a seasonal example, just because people in Belgium tend to spend more
in the shops when it's cold and less when it's hot doesn't mean cold
weather causes high street spending.
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Establishing causation: causal variants for human complex traits

o Wet lab efforts
- Gene knock-out experiments
" The findings of animal experiments may not be directly applicable
to the human situation because of genetic, anatomic, and
physiologic differences
e Dry lab efforts
- As opposed to association studies that benefit from LD, the main
challenge in identifying causal variants at associated loci analytically lies
in distinguishing among the many closely correlated variants due to LD.
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Genome-wide Causation Studies of Complex Diseases
Rong Jiao', Xiangning Chen’, Eric Boerwinkle® & Momiao Xiong'"

'Department of Biostatistics and Data Science, School of Public Health, The University of Texas
Health Science Center at Houston, Houston, Texas, USA

* Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada, USA

3Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University
of Texas Health Science Center at Houston, Houston, Texas, USA

Key words: Causal inference, GWAS, GWCS, additive noise models, linkage disequilibrium,

prediction
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6 Post Association Analysis Steps

6.a Replication and Validation

The difference

Random variation

Original
study

Sample

A

Original _ | Systematic variation

_ Different

population

Sample

Replication

" population

sample

L J

Validation

(Igl et al. 2009)
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Guidelines for replication studies

e Replication studies should be of sufficient size to demonstrate the effect
e Replication studies should conducted in independent datasets

e Replication should involve the same phenotype

e Replication should be conducted in a similar population

e The same SNP should be tested

e The replicated signal should be in the same direction

e Joint analysis should lead to a lower p-value than the original report

e Well-designed negative studies are valuable

Note that SNPs are most likely to replicate when they
- show modest to strong statistical significance,
- have common minor allele frequency,
- exhibit modest to strong genetic effect size (~strength of
association)
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6.b GWA Interpretation and follow-up

Entering the field of functional genomics

Marker = Association = ,
Disease locus Causal relationship Disease
--------------------------------------- ...-

Marker Association Disease

Causal
relationship

Linkage
disequilibrium

Disease locus

(Ziegler and Van Steen, Brazil 2010)
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Finding the “relevant” loci — naive approach

A
67400000
Hypothetical protein, IL12RB2: interleukin 12
NM_001013674 receptor, beta-2
"

B4

12 -
§ 10 <| o * %
S 8- e ke ®
a
2 6~ ‘e

4- . .
g 24 . r . ‘

0- " e * LR ° e o ° ° ® . ® . .,

00000
C ( Allukllil :l.llll\xx:l
IS T e N SR
S | PN A LA
(\ ’ ¢ R ‘0‘,“1 X 25N ’\\
X NP B P2 B N

(Duerr et al 2006)
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Some criteria to assess the functional relevance of a variant

Criteria

Nucleolide sequenos

Evoluticnery
conservation

Populaton genetics

Experimental evidence

Exposures (for example,
genotype—endronment
ineraction studies)
Epidemiological

evidenos

rtfor
significance

Strong sy,
functio

Variant disrupts a known furctional

or structural motf

Conslsten evidencs from multiple
approaches for conservation across
spedias ard multigene families

In the absence cf laboratory arror, strong
doviatione from expooied population
frequencies in cases and/or controls in a
particular ethnicity

Consistent effecs from multiple lines of
expaimental avidence; affact in human
context is establshed; effec: in target
tissuz is knosn

Varient is known to affect the
metebolism of the exposurain
the relevart target tissue

Consistent and rsproducible reports of

Moderate support for
functional significance

Variantis a missense change or disrupts a
putative functional matif, changes to protein

structure micht ocour

Evidence for conservaticn across specles
a multigene families

In the ebsance of laborarory eror, roderate
to emal deviatione from oxpoctod population
frequencies in cases and/or controls; effects

are notwell characterized by ethniciy

Some (possibly inconsistent) evidence for
function frorr exparimeantal dara; affect in
humnan context or target tissue is unclear

Variant might affec: metabolism of the
exposure or one of its components;
effect in target tissue might not be known

Fepaorts of association exist;

modzrate-to-large magnitude associations replication studies are not avaiable

Evidence against
functional significance

\ariant disrusts a non-coding
region with ro known functioral o
structural motif

MNucleotide cr amino-acid residue
rot conserved

Populetion cenetics data indicates
ro dovatione frorr expected
proportions

Experimental evidence consistently
indicatas no finctional effact

\ariant does not afect metabaliam
of exposure of interest

Prior studies show no effect of
variant

(Rebbeck et al 2004)
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Finding the “relevant” loci - via “functional genomics”

ES

ZBROAD

A% INSTITUTE

Documentation Citation Contact Feedback

DEPICT

"DEPICT" your
association study

DEPICT is an integrative tool that based on predicted gene
functions systematically prioritizes the most likely causal
genes at associated loci, highlights enriched pathways, and
identifies tissues/cell types where genes from associated loci
are highly expressed

Download DEPICT (2.9 GB) today

(https://data.broadinstitute.org/mpg/depict/)
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Finding the “relevant” loci - via
“functional genomics”

FUMA on GWAS summary statistics.
SNP2GENE prioritizes functional SNPs and
genes, outputs tables (blue boxes), and
creates Manhattan, quantile—quantile (QQ)
and interactive regional plots (box at right
bottom).

GENE2FUNC provides four outputs; a gene
expression heatmap, enrichment of
differentially expressed gene (DEG) sets in a
certain tissue compared to all other tissue
types, overrepresentation of gene sets, and
links to external biological information of
input genes.

(https://fuma.ctglab.nl/)

GWAS summary statistics

—J

|

SNP2GENE

Step 2. Annotation of candidate SNPs in
genomic loci

|
N7
Characterization of significant hits
- N Independent r
( Step 1. Characterize genomic loci significant SNPs ‘
1. Identification of independent significant SNPs
and candidate SNPs (SNPs in LD) 1 Lead SNPs
2. Defining lead SNPs
3. Defining genomic risk loci
\_ / Genomic risk
= \I/ - loci
"8 N\

Functional consequences on genes (ANNOVAR),
CADD score. R DB score, 15

state (127 tissue/cell types),eQTL, 3D chromation
interactions (Hi-C).GWAScatalog

SNPs with
annotations

Vv

MAGMA gene analysis

l

Genome-wide analyses

MAGMA gene-set analysis

I

Gene-based
P-values

eQTLs

2

Step 3. Functional Gene mapping

Chromatin
-\ interactions

[ Positional mapping II

eQTL mapping

I Chromatin interaction mapping |

table

S

GENE2FUNC

Interactive heatmap of
gene expression

——
ol -

%

Tissue specificity (DEG)

P | 1...L-J Ll
u.‘_& [ P - )
4...LAL .Lf-l‘_l I_J

Overrepresentation in gene sets

Halimark gene sets
Positional gene sets
Curated gene sets
Motif gene sets

GO terms gene sets

General biclogical functions of genes

OMIM (known disease assoclations), DrugBank (known targets of drugs),

genecards (general biological information)

Mapped genes

il

Gene set
P-values

AN

Interactive visualization

.‘.V.- > s ¥
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Natural to look at gene expression (in its full complexity!)

Q: "How can something as complicated as a
human have only 25 percent more genes
than the tiny roundworm C. elegans?"

Part of the answer seems to involve
alternative splicing:

Protein A Protein B Protein C
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From SNPs to genes as units of (follow-up pathway) analysis

e Pathway analysis allows the interpretation of variants with respect to the
biological processes in which the affected genes and proteins are involved.

e Examining the cumulative effects of numerous variants and visualizing
them at the pathway level, can empower detection of genetic risk factors
for complex diseases.

e Visualizing tools can largely aid in making sense of GWAS data!

Next plot:

Highlighted green are the tools in which the specific feature described is present, red
highlights indicate features that are either not present or partially present in the tools
reviewed.

(Cirillo et al 2017)
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A  Pathways list

Pathways diagram

C  Other information
and hyperlinks

-Pathways would be
listed based on output of
a specific GWAS
pathway-bascd
algorithm. (No

- Pathway names are to
be ranked according

p-values and/or FDR, etc.

(MetaCore, IPA and
PathVisio)

-Pathways names upon
click will appear in the

central panel. (MetaCore
and Caleydo)

..........

Clicking a gene
initiates display of
information in the
right panel.
(MetaCore, IPA,
PathVisio,

Brain-derived neurotrophic factor signaling pathway

i

nmu é SORT1 "‘;'g""
o Neurotramsmit
T release

Ly

Specific information is shown
related to the selected gene:

- Pathways

Pathways list of pathways (left
panel) that contain the selected
gene. (Caleydo)

-Gene

Hyperlinks to databases that
contain gene information.
(MetaCore, IPA PathVisio)
-SNP

The list of uploaded SNPs is
displayed. (MetaCore, IPA
PathVisio) SNPs IDs are
hyperlinked to databases with
added information: description,
LD plot, GxE mteractmn

-Other data

Other uploaded data related to
the gene are shown. (MetaCore,
IPA PathVisio)

(Cirillo et al 2017)
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Gene expression as an extra source of information

Q: "How can something as complicated as a human
have only 25 percent more genes than the tiny
roundworm C. elegans?"

Part of the answer seems to involve alternative
splicing:

MRNA  tateelieselfslsilebsblebslef - B R s T

Translation Translation Translation

Protein A Protein B Protein C

Van Steen K
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Questions?
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Main supporting doc to this class (complementing course slides)
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Chapter 11: Genome-Wide Association Studies

William S. Bush'*, Jason H. Moore?

1 Department of Biomedical Informatics, Center for Human Genetics Research, Vanderbilt University Medical School, Nashville, Tennessee, United States of America,
2 Departments of Genetics and Community Family Medicine, Institute for Quantitative Biomedical Sciences, Dartmouth Medical School, Lebanon, New Hampshire, United
States of America

\J /A tutorial on statistical methods for

population association studies

David J. Balding

Abstract | Although genetic association studies have been with us for many years, even for
the simplest analyses there is little consensus on the most appropriate statistical procedures.
Here | give an overview of statistical approaches to population association studies, including
preliminary analyses (Hardy-Weinberg equilibrium testing, inference of phase and missing
data, and SNP tagging), and single-SNP and multipoint tests for association. My goal is to
outline the key methods with a brief discussion of problems (population structure and
multiple testing), avenues for solutions and some ongoing developments.

Nature reviews Genetics 2006; 5:63-70 — for those
interested in technical (statistical) details
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Homework assignment |

-+

Check out the document

“Critical evaluation of a paper/report”
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